Ruben A. Tikidji-Hamburyan, Carmen C. Canavier
**Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability **
eNeuro (in press)
To use this scripts you need Python 2.7 and python's libraries:
- numpy
- scipy
- matplotlib and LaTeX for correct graphical interface
Under Ubuntu or any other Debian based Linux, run sudo apt-get install python-numpy python-scipy python-matplotlib texlive-full.
You can use yum or zymm under RadHad or SUSE based Linux distributions.
To run simulations:
- nrnivmodl
- nrngui -nogui -python network.py [parameters]
[paramters] for different figures are given below
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133 /neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0 /ttFFT=False /tracetail=p2eLFP /N2NHI=False /nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9 /nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133 /neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20. /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0 /ttFFT=False /tracetail=p2eLFP /N2NHI=False /nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9 /nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
Figure 3C $^2$
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY\*1e-2 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=XXX\*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0 /tstop=2500 /cliptrn=500
where XXX is a synaptic conductance and YYYY is a level of noise. The scale 1e-2 converts nA into uA/cm2 and uS into mS/cm2.
Figure 3D $^2$
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY*1e-2 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=XXX*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0 /tstop=2500 /cliptrn=500
where XXX is a synaptic conductance and YYYY is a level of noise.
Figure 4A and supplementary movie sp1-20190619163238.mp4 $^1$
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133 /neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist="UNIFORM" /ttFFT=False /tracetail=p2eLFP /N2NHI=False /pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
Figure 4B and supplementary movie sp2-20190619165631.mp4 $^1$
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133 /neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp='u',0.02,0.037 /synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist="UNIFORM" /ttFFT=False /tracetail=p2eLFP /N2NHI=False /pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133 /neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0 /ttFFT=False /tracetail=p2eLFP /N2NHI=False /nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9 /nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133 /neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20. /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0 /ttFFT=False /tracetail=p2eLFP /N2NHI=False /nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9 /nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
Figure 5C $^2$
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY*1e-2 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=XXX*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0 /tstop=2500 /cliptrn=500
where XXX is a synaptic conductance and YYYY is a level of noise.
Figure 5D $^2$
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY*1e-2 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=XXX*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0 /tstop=2500 /cliptrn=500
where XXX is a synaptic conductance and YYYY is a level of noise.
Figure 6A and supplementary movie sp3-20190619103132.mp4 $^1$
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133 /neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65. /ttFFT=False /tracetail=p2eLFP /N2NHI=False /pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
Figure 6B and supplementary movie sp4-20190619104959.mp4 $^1$
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133 /neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp=\'u\',0.02,0.037 /synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65. /ttFFT=False /tracetail=p2eLFP /N2NHI=False /pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I /singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=5.e-06 /singmod/per=200.0
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I /singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=5.e-06 /singmod/per=200.0
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I /singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=2.e-06 /singmod/per=100.0
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /corefunc=24 /synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I /singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=2.e-06 /singmod/per=100.0
Any point on heatmap Figure 7 C1 $^2$
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=20000.0 /tstop=20000.0 /singmod/gmax=XXXX*1e-2 /singmod/per=1000./YYYY
where XXXX is modulation conductance in
Any point on heatmap Figure 7 C2 $^2$
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=20000.0 /tstop=20000.0 /singmod/gmax=XXXX*1e-2 /singmod/per=1000./YYYY
where XXXX is modulation conductance in
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68 /gui=ON /git=ON /preview=ON /tv=0,500 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3 /singmod/tstart=-100 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=200 /tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68 /gui=ON /git=ON /preview=ON /tv=0,500 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3 /singmod/tstart=-100 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=200 /tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68 /gui=ON /git=ON /preview=ON /tv=0,500 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3 /singmod/tstart=-50 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=100 /tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68 /gui=ON /git=ON /preview=ON /tv=0,500 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3 /singmod/tstart=-50 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=100 /tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I /singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=8.e-06 /singmod/per=200.0
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I /singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=8.e-06 /singmod/per=200.0
Any point on heatmap Figure 9 C1 $^2$
nrngui -nogui -python network.py /neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tstop=2000.0 /singmod/gmax=XXXX*1.e-02 /singmod/per=1000./YYYY
where XXXX is modulation conductance in
Any point on heatmap Figure 9 C2 $^2$
nrngui -nogui -python network.py /neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037 /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133 /synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tstop=2000.0 /singmod/gmax=XXXX*1.e-02 /singmod/per=1000./YYYY
where XXXX is modulation conductance in
Use parameters for Figures 3C, 3D, 5C, 5D, 9C1, or 9C2 as above and add /neuron/distribution/F=\'n\',1.04,0.4
to the end of command line.
- For Figures 4A, 4B, 6A, and 6B, if you click on phase-plot window, you can explore evolution of population dynamics using page-up/page-down keys.
- Simulations for Figures 3C, 3D, 5C, 5D, 7C, and 9C will not show anything on the screen. All results are saved in the
network.simdb
file.simdb
has a very simple format: each simulation is a line. Column:
separates recorded fields. Each field is a couplekey=value
with the equal symbol as a separator. An example of fields in a simulation record shows R2-index of network synchronization, spike-per-cycle, and neurons firing rate to network frequency ratio:/R2-results/R2=0.80846372802:/R2-results/spc=88.1:/R2-results/stdr_Fr/Fnet=0.264655449759
File | Description |
---|---|
network.py | main script |
norm_translation.py | subroutine for synapses amplitude normalization (wasn't used in the paper) |
type21v02.mod | NEURON module for membrane currents of a single neuron |
innp.mod | noise current generator, writen by Ted Carnevale |
sinGstim.mod | module for sinusoidal conductance modulation |
sinIstim.mod | module for sinusoidal current modulation (wasn't used in the paper) |
2022-05: Updated MOD files to contain valid C++ and be compatible with the upcoming versions 8.2 and 9.0 of NEURON.