-
Notifications
You must be signed in to change notification settings - Fork 0
/
nmda_plateaus.py
154 lines (123 loc) · 4.5 KB
/
nmda_plateaus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 2 17:50:36 2019
@author: daniel
"""
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 15 17:48:41 2016
@author: daniel
"""
from neuron import h
import d1msn as msn
#import iMSN
import spillover_experiment as pe
import pickle
import parameters as p
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import json
import scipy.signal as ss
# --- 1. Create a cell and other useful stuff
dMSN_library = 'D1_71bestFit_updRheob.pkl'
iMSN_library = 'D2_34bestFit_updRheob.pkl'
with open(dMSN_library, 'rb') as f:
model_sets = pickle.load(f, encoding="latin1")
cell_ID = 34
#cell_ID = 1
variables = model_sets[cell_ID]['variables']
#cell = iMSN.iMSN(variables = variables)
cell = msn.MSN(variables = variables)
for d in p.input_dends:
cell.dendlist[d].nseg *=5
print(cell.max_dist())
for sec in cell.dendlist:
print(sec.name(), "%f, %f, %f, d = %.2f" % (h.distance(1, sec = sec),
h.distance(0, sec = sec),
h.distance(1, sec = sec) - h.distance(0, sec = sec),
sec.diam))
for sec in cell.somalist:
print(sec.name(), "%f, %f, %f, d = %.2f" % (h.distance(1, sec = sec),
h.distance(0, sec = sec),
h.distance(1, sec = sec) - h.distance(0, sec = sec),
sec.diam))
# --- 2. Insert stimulation to cell
#independent_dends = [3, 5, 8, 12, 15, 22, 26, 35, 41, 47, 53, 57]
dend_record_list = [22] #[3,4,9,10,21,22,24,26,35,36,51,52]
dend_stim_list = []#[3,4,9,10,35,36]
plateau_cluster_list = [22]
plateau_cluster_size = np.arange(1,31,1)
vs = []
vspine = []
vd = []
legend = []
max_vs = []
max_vspine = []
max_vd = []
g_nmda = []
i_nmda = []
sns.set(font_scale = 1.0)
sns.set_style('whitegrid')
fig_vs = plt.figure();
fig_vspine = plt.figure();
fig_vd = plt.figure();
ax_vs = fig_vs.add_subplot(111); ax_vs.set_ylabel('Vs (mV)'); ax_vs.set_xlabel('t (ms)')
ax_vspine = fig_vspine.add_subplot(111); ax_vspine.set_ylabel('Vspine (mV)'); ax_vspine.set_xlabel('t (ms)')
ax_vd = fig_vd.add_subplot(111); ax_vd.set_ylabel('Vd (mV)'); ax_vd.set_xlabel('t (ms)')
colors = sns.color_palette("coolwarm", plateau_cluster_size.max())
add_spine = 0
on_spine = 1
cell.insert_spines(plateau_cluster_list, p.cluster_start_pos, p.cluster_end_pos, num_spines = p.plateau_cluster_size_max)
sns.set_style("ticks")
for num_syns in plateau_cluster_size:
ex = pe.Spillover_Experiment('record_ca', cell)
ex.insert_synapses('noise_SPN')
ex.insert_synapses('my_spillover', plateau_cluster_list, deterministic = 0,
num_syns = num_syns, add_spine = add_spine, on_spine = on_spine)
ex.set_up_recording(dend_record_list)
ex.simulate()
tv = ex.tv.to_python()
t = ex.t.to_python()
legend.append("%d syns" % num_syns)
if add_spine == 1 or on_spine == 1:
vspine.append(ex.vspine[0].to_python())
max_vspine.append(max(ex.vspine[0]))
ax_vspine.plot(tv, ex.vspine[0].to_python(), color = colors[num_syns-1])
vd.append(ex.vdlist[0].to_python())
max_vd.append(max(ex.vdlist[0]))
max_vs.append(max(ex.vs))
vs.append(ex.vs.to_python())
cell.esyn = []
ex.estim = []
ex.enc = []
for s in cell.spines:
s.syn_on = 0
cell.isyn = []
ex.istim = []
ex.inc = []
#
vs_indices = []; vs_widths = []
vd_indices = []; vd_widths = []
vspine_indices = []; vspine_wid = []
for v in vs:
vs_indices.append(ss.find_peaks(v))
vs_widths.append(ss.peak_widths(v, (vs_indices[-1])[0], rel_height = 0.15))
for v in vd:
vd_indices.append(ss.find_peaks(v))
vd_widths.append(ss.peak_widths(v, (vd_indices[-1])[0] ,rel_height = 0.15))
for i in range(0, len(vs)):
if add_spine ==0 and on_spine ==0:
ax_vd.plot(tv, vd[i]);
ax_vs.plot(tv, vs[i], color = colors[i]); ax_vs.set_title("weight = %.2f, Cdur_factor = %d" % (p.weight, p.eCdur_factor))
ax_vd.plot(tv, vd[i], color = colors[i]); ax_vs.set_title("weight = %.2f, Cdur_factor = %d" % (p.weight, p.eCdur_factor))
ax_vd.set_title("weight = %.2f, Cdur_factor = %d" % (p.weight, p.eCdur_factor))
sns.despine()
res_dict = {'t': t,
'vs': vs,
'vspine': vspine}
to_save = json.dumps(res_dict)
#filename = './results/data_spillover_steep.dat'
#with open(filename,'w', encoding = 'utf-8') as f:
# json.dump(to_save, f)
plt.show()