-
Notifications
You must be signed in to change notification settings - Fork 25
/
poseidon.c
200 lines (173 loc) · 6.12 KB
/
poseidon.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*******************************************************************************
* Poseidon is used to hash to a field in the schnorr signature scheme we use.
* In order to be efficiently computed within the snark, it is computed using
* the base field of the elliptic curve, and the result is then used as a
* scalar field element, to scale the elliptic curve point. We do all of the
* computation in this file in the base field, but output the result as a scalar.
********************************************************************************/
#include <assert.h>
#include "crypto.h"
#include "pasta_fp.h"
#include "pasta_fq.h"
#include "poseidon.h"
#include "poseidon_params_legacy.h"
#include "poseidon_params_kimchi.h"
#define SPONGE_BYTES(sponge_width) (sizeof(Field)*sponge_width)
#define ROUND_KEY(ctx, round, idx) *(Field *)(ctx->round_keys + (round*ctx->sponge_width + idx)*LIMBS_PER_FIELD)
#define MATRIX_ELT(m, row, col, width) *(Field *)(m + (row*width + col)*LIMBS_PER_FIELD)
static void matrix_mul(State s1, const Field **m, const size_t width)
{
Field tmp;
State s2;
bzero(s2, sizeof(s2));
for (size_t row = 0; row < width; row++) {
// Inner product
for (size_t col = 0; col < width; col++) {
Field t0;
field_mul(t0, s1[col], MATRIX_ELT(m, row, col, width));
field_copy(tmp, s2[row]);
field_add(s2[row], tmp, t0);
}
}
for (size_t col = 0; col < width; col++) {
field_copy(s1[col], s2[col]);
}
}
// Legacy poseidon permutation function
static void permutation_legacy(PoseidonCtx *ctx)
{
Field tmp;
// Full rounds only
for (size_t r = 0; r < ctx->full_rounds; r++) {
// ark
for (size_t i = 0; i < ctx->sponge_width; i++) {
field_copy(tmp, ctx->state[i]);
field_add(ctx->state[i], tmp, ROUND_KEY(ctx, r, i));
}
// sbox
for (size_t i = 0; i < ctx->sponge_width; i++) {
field_copy(tmp, ctx->state[i]);
field_pow(ctx->state[i], tmp, ctx->sbox_alpha);
}
// mds
matrix_mul(ctx->state, ctx->mds_matrix, ctx->sponge_width);
}
// Final ark
for (size_t i = 0; i < ctx->sponge_width; i++) {
field_copy(tmp, ctx->state[i]);
field_add(ctx->state[i], tmp, ROUND_KEY(ctx, ctx->full_rounds, i));
}
}
// Kimchi poseidon permutation function
static void permutation_kimchi(PoseidonCtx *ctx)
{
Field tmp;
// Full rounds only
for (size_t r = 0; r < ctx->full_rounds; r++) {
// sbox
for (unsigned int i = 0; i < ctx->sponge_width; i++) {
field_copy(tmp, ctx->state[i]);
field_pow(ctx->state[i], tmp, ctx->sbox_alpha);
}
// mds
matrix_mul(ctx->state, ctx->mds_matrix, ctx->sponge_width);
// ark
for (unsigned int i = 0; i < ctx->sponge_width; i++) {
field_copy(tmp, ctx->state[i]);
field_add(ctx->state[i], tmp, ROUND_KEY(ctx, r, i));
}
}
}
struct poseidon_config_t {
size_t sponge_width;
size_t sponge_rate;
size_t full_rounds;
size_t sbox_alpha;
const Field ***round_keys;
const Field **mds_matrix;
const Field *sponge_iv[2];
void (*permutation)(PoseidonCtx *);
} _poseidon_config[2] = {
// 0x00 - POSEIDON_LEGACY
{
.sponge_width = SPONGE_WIDTH_LEGACY,
.sponge_rate = SPONGE_RATE_LEGACY,
.full_rounds = ROUND_COUNT_LEGACY - 1,
.sbox_alpha = SBOX_ALPHA_LEGACY,
.round_keys = (const Field ***)round_keys_legacy,
.mds_matrix = (const Field **)mds_matrix_legacy,
.sponge_iv = {
(const Field *)testnet_iv_legacy,
(const Field *)mainnet_iv_legacy
},
.permutation = permutation_legacy
},
// 0x01 - POSEIDON_KIMCHI
{
.sponge_width = SPONGE_WIDTH_KIMCHI,
.sponge_rate = SPONGE_RATE_KIMCHI,
.full_rounds = ROUND_COUNT_KIMCHI,
.sbox_alpha = SBOX_ALPHA_KIMCHI,
.round_keys = (const Field ***)round_keys_kimchi,
.mds_matrix = (const Field **)mds_matrix_kimchi,
.sponge_iv = {
(const Field *)testnet_iv_kimchi,
(const Field *)mainnet_iv_kimchi
},
.permutation = permutation_kimchi
}
};
bool poseidon_init(PoseidonCtx *ctx, const uint8_t type, const uint8_t network_id)
{
if (!ctx) {
return false;
}
if (type != POSEIDON_LEGACY &&
type != POSEIDON_KIMCHI) {
return false;
}
if (network_id != TESTNET_ID &&
network_id != MAINNET_ID &&
network_id != NULLNET_ID) {
return false;
}
ctx->sponge_width = _poseidon_config[type].sponge_width;
ctx->sponge_rate = _poseidon_config[type].sponge_rate;
ctx->full_rounds = _poseidon_config[type].full_rounds;
ctx->sbox_alpha = _poseidon_config[type].sbox_alpha;
ctx->round_keys = _poseidon_config[type].round_keys;
ctx->mds_matrix = _poseidon_config[type].mds_matrix;
ctx->permutation = _poseidon_config[type].permutation;
if (network_id != NULLNET_ID) {
memcpy(ctx->state, _poseidon_config[type].sponge_iv[network_id],
SPONGE_BYTES(ctx->sponge_width));
}
else {
bzero(ctx->state, SPONGE_BYTES(ctx->sponge_width));
}
ctx->absorbed = 0;
return true;
}
void poseidon_update(PoseidonCtx *ctx, const Field *input, size_t len)
{
Field tmp;
for (size_t i = 0; i < len; i++) {
if (ctx->absorbed == ctx->sponge_rate) {
ctx->permutation(ctx);
ctx->absorbed = 0;
}
field_copy(tmp, ctx->state[ctx->absorbed]);
field_add(ctx->state[ctx->absorbed], tmp, input[i]);
ctx->absorbed++;
}
}
// Squeezing poseidon returns the first element of its current state.
void poseidon_digest(Scalar out, PoseidonCtx *ctx) {
ctx->permutation(ctx);
uint64_t tmp[4];
fiat_pasta_fp_from_montgomery(tmp, ctx->state[0]);
// since the difference in modulus between the two fields is < 2^125,
// with high probability, a random value from one field will fit in the
// other field.
fiat_pasta_fq_to_montgomery(out, tmp);
}