You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Saving the trained Neural Net to models/multi_sparse_1/DeepNeuralNetParameters.npz
Traceback (most recent call last):
File "DeepNeuralNetTrain.py", line 555, in
main()
File "DeepNeuralNetTrain.py", line 534, in main
num.savez(saveModelPath, **NNParametersDict);
File "/root/miniconda3/envs/my-env/lib/python2.7/site-packages/numpy/lib/npyio.py", line 595, in savez
_savez(file, args, kwds, False)
File "/root/miniconda3/envs/my-env/lib/python2.7/site-packages/numpy/lib/npyio.py", line 714, in _savez
format.write_array(fid, np.asanyarray(val),
File "/root/miniconda3/envs/my-env/lib/python2.7/site-packages/numpy/core/numeric.py", line 544, in asanyarray
return array(a, dtype, copy=False, order=order, subok=True)
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 1059, in iter
for i in tuple(xrange(len(self))): yield self[i]
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 1026, in getitem
ret = self[selectors[:axisI] + (_short_slice(_read_single_index(axisSelector, axisLen)),)] .reshape(_deleteT2(self.shape, axisI))
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 1045, in getitem
if axisI==0: return garray(_cm_row_slice_read(self._base_shaped(1), sFrom, sTo), retShape, self) # slice on axis 0 is free, using _cm_row_slice_read
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 587, in _base_shaped
def _base_shaped(self, nDimsAsRows): return _cm_reshape(self._base, (_prodT(self.shape[:nDimsAsRows]), _prodT(self.shape[nDimsAsRows:])))
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 165, in _cm_reshape
else: return cm.reshape(tuple(reversed(newShape)))
File "/root/DeepNeuralNet-QSAR-master/npmat.py", line 99, in reshape
self.numpy_array.resize(*shape)
ValueError: resize only works on single-segment arrays
I have this problem during the training of the model, how can I solve it?
I would appreciate if you can reply!
The text was updated successfully, but these errors were encountered:
Saving the trained Neural Net to models/multi_sparse_1/DeepNeuralNetParameters.npz
Traceback (most recent call last):
File "DeepNeuralNetTrain.py", line 555, in
main()
File "DeepNeuralNetTrain.py", line 534, in main
num.savez(saveModelPath, **NNParametersDict);
File "/root/miniconda3/envs/my-env/lib/python2.7/site-packages/numpy/lib/npyio.py", line 595, in savez
_savez(file, args, kwds, False)
File "/root/miniconda3/envs/my-env/lib/python2.7/site-packages/numpy/lib/npyio.py", line 714, in _savez
format.write_array(fid, np.asanyarray(val),
File "/root/miniconda3/envs/my-env/lib/python2.7/site-packages/numpy/core/numeric.py", line 544, in asanyarray
return array(a, dtype, copy=False, order=order, subok=True)
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 1059, in iter
for i in tuple(xrange(len(self))): yield self[i]
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 1026, in getitem
ret = self[selectors[:axisI] + (_short_slice(_read_single_index(axisSelector, axisLen)),)] .reshape(_deleteT2(self.shape, axisI))
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 1045, in getitem
if axisI==0: return garray(_cm_row_slice_read(self._base_shaped(1), sFrom, sTo), retShape, self) # slice on axis 0 is free, using _cm_row_slice_read
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 587, in _base_shaped
def _base_shaped(self, nDimsAsRows): return _cm_reshape(self._base, (_prodT(self.shape[:nDimsAsRows]), _prodT(self.shape[nDimsAsRows:])))
File "/root/DeepNeuralNet-QSAR-master/gnumpy.py", line 165, in _cm_reshape
else: return cm.reshape(tuple(reversed(newShape)))
File "/root/DeepNeuralNet-QSAR-master/npmat.py", line 99, in reshape
self.numpy_array.resize(*shape)
ValueError: resize only works on single-segment arrays
I have this problem during the training of the model, how can I solve it?
I would appreciate if you can reply!
The text was updated successfully, but these errors were encountered: