-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
75 lines (70 loc) · 2.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.llms import huggingface_hub
from htmlTemplates import css, bot_template, user_template
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
p=PdfReader(pdf)
for i in p.pages:
text+=i.extract_text()
return text
def get_text_chunks(text):
text_spitter=CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks=text_spitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings=HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore=FAISS.from_texts(text=text_chunks,embedding=embeddings)
return vectorstore
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def get_conversation_store(vectorstore):
llm=huggingface_hub(repo_id="google/flan-t5-xxl",model_kwargs={"temperature":0.5,"max_length":512})
memory=ConversationBufferMemory(memory_key="chat history",return_messages=True)
conversation_chain=ConversationalRetrievalChain.from_llm(
llm=llm,retriever=vectorstore.as_retriever(),memory=memory
)
return conversation_chain
def main():
load_dotenv()
st.set_page_config(page_title="Chat with pdfs",page_icon=":books:")
if "conversation" not in st.session_state:
st.session_state.conversation=None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with pdfs")
user_question=st.text_input("Ask qs to your docs:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs=st.file_uploader("Uplod pdfs here and click on 'Process'",accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
raw_text=get_pdf_text(pdf_docs)
text_chunks=get_text_chunks(raw_text)
vectorstore=get_vectorstore(text_chunks)
st.session_state.conversation=get_conversation_store(vectorstore)
if __name__=='__main__' :
main()