-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stock Price Prediction.py
84 lines (67 loc) · 2.68 KB
/
Stock Price Prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Importing the Libraries
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Importing the Dataset
dataset_train_path = os.getcwd() + "Dataset/Google_Stock_Price_Train.csv"
dataset_train = pd.read_csv(dataset_train_path)
training_set = dataset_train.iloc[:,1:2].values
# Feature Scaling
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range = (0,1))
scaled_training_set = scaler.fit_transform(training_set)
# Creating new Data Structure
X_train = []
y_train = []
for i in range(60,1258):
X_train.append(scaled_training_set[i-60:i, 0])
y_train.append(scaled_training_set[i, 0])
X_train = np.array(X_train)
y_train = np.array(y_train)
X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 1))
# Building the Neural Network
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Dropout
regressor = Sequential()
regressor.add(LSTM(units = 50, return_sequences= True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences= True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences= True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
regressor.add(Dense(units=1))
# Compiling and Fitting the RNN to the Training set
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
regressor.fit(X_train, y_train, epochs=100, batch_size=32)
# Making Predictions
# getting the Actual Stock Prices of Jan-2017
dataset_test_path = os.getcwd() + "Dataset/Google_Stock_Price_Test.csv"
dataset_test = pd.read_csv(dataset_test_path)
actual_stock_price = dataset_test.iloc[:,1:2].values
# getting the Predicted Stock Prices of Jan-2017
# Step1 - preparing the input for the model
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0)
inputs = dataset_total[len(dataset_total)- len(dataset_test)-60:].values
inputs = inputs.reshape(-1,1)
inputs = scaler.transform(inputs)
X_test = []
for i in range(60,80):
X_test.append(inputs[i-60:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test,(X_test.shape[0], X_test.shape[1], 1))
# Step2 - prediction
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = scaler.inverse_transform(predicted_stock_price)
# Visualising the Results
plt.plot(actual_stock_price, color = 'red', label = 'Actual Google Stock Price')
plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted Google Stock Price')
plt.title('Google Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Google Stock Price')
plt.legend()
plt.show()