forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dimensionality_reduction.py
198 lines (161 loc) · 6.95 KB
/
dimensionality_reduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) 2023 Diego Gasco (diego.gasco99@gmail.com), Diegomangasco on GitHub
"""
Requirements:
- numpy version 1.21
- scipy version 1.3.3
Notes:
- Each column of the features matrix corresponds to a class item
"""
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def column_reshape(input_array: np.ndarray) -> np.ndarray:
"""Function to reshape a row Numpy array into a column Numpy array
>>> input_array = np.array([1, 2, 3])
>>> column_reshape(input_array)
array([[1],
[2],
[3]])
"""
return input_array.reshape((input_array.size, 1))
def covariance_within_classes(
features: np.ndarray, labels: np.ndarray, classes: int
) -> np.ndarray:
"""Function to compute the covariance matrix inside each class.
>>> features = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> labels = np.array([0, 1, 0])
>>> covariance_within_classes(features, labels, 2)
array([[0.66666667, 0.66666667, 0.66666667],
[0.66666667, 0.66666667, 0.66666667],
[0.66666667, 0.66666667, 0.66666667]])
"""
covariance_sum = np.nan
for i in range(classes):
data = features[:, labels == i]
data_mean = data.mean(1)
# Centralize the data of class i
centered_data = data - column_reshape(data_mean)
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(centered_data, centered_data.T)
else:
# If covariance_sum is np.nan (i.e. first loop)
covariance_sum = np.dot(centered_data, centered_data.T)
return covariance_sum / features.shape[1]
def covariance_between_classes(
features: np.ndarray, labels: np.ndarray, classes: int
) -> np.ndarray:
"""Function to compute the covariance matrix between multiple classes
>>> features = np.array([[9, 2, 3], [4, 3, 6], [1, 8, 9]])
>>> labels = np.array([0, 1, 0])
>>> covariance_between_classes(features, labels, 2)
array([[ 3.55555556, 1.77777778, -2.66666667],
[ 1.77777778, 0.88888889, -1.33333333],
[-2.66666667, -1.33333333, 2. ]])
"""
general_data_mean = features.mean(1)
covariance_sum = np.nan
for i in range(classes):
data = features[:, labels == i]
device_data = data.shape[1]
data_mean = data.mean(1)
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(data_mean) - column_reshape(general_data_mean),
(column_reshape(data_mean) - column_reshape(general_data_mean)).T,
)
else:
# If covariance_sum is np.nan (i.e. first loop)
covariance_sum = device_data * np.dot(
column_reshape(data_mean) - column_reshape(general_data_mean),
(column_reshape(data_mean) - column_reshape(general_data_mean)).T,
)
return covariance_sum / features.shape[1]
def principal_component_analysis(features: np.ndarray, dimensions: int) -> np.ndarray:
"""
Principal Component Analysis.
For more details, see: https://en.wikipedia.org/wiki/Principal_component_analysis.
Parameters:
* features: the features extracted from the dataset
* dimensions: to filter the projected data for the desired dimension
>>> test_principal_component_analysis()
"""
# Check if the features have been loaded
if features.any():
data_mean = features.mean(1)
# Center the dataset
centered_data = features - np.reshape(data_mean, (data_mean.size, 1))
covariance_matrix = np.dot(centered_data, centered_data.T) / features.shape[1]
_, eigenvectors = np.linalg.eigh(covariance_matrix)
# Take all the columns in the reverse order (-1), and then takes only the first
filtered_eigenvectors = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
projected_data = np.dot(filtered_eigenvectors.T, features)
logging.info("Principal Component Analysis computed")
return projected_data
else:
logging.basicConfig(level=logging.ERROR, format="%(message)s", force=True)
logging.error("Dataset empty")
raise AssertionError
def linear_discriminant_analysis(
features: np.ndarray, labels: np.ndarray, classes: int, dimensions: int
) -> np.ndarray:
"""
Linear Discriminant Analysis.
For more details, see: https://en.wikipedia.org/wiki/Linear_discriminant_analysis.
Parameters:
* features: the features extracted from the dataset
* labels: the class labels of the features
* classes: the number of classes present in the dataset
* dimensions: to filter the projected data for the desired dimension
>>> test_linear_discriminant_analysis()
"""
# Check if the dimension desired is less than the number of classes
assert classes > dimensions
# Check if features have been already loaded
if features.any:
_, eigenvectors = eigh(
covariance_between_classes(features, labels, classes),
covariance_within_classes(features, labels, classes),
)
filtered_eigenvectors = eigenvectors[:, ::-1][:, :dimensions]
svd_matrix, _, _ = np.linalg.svd(filtered_eigenvectors)
filtered_svd_matrix = svd_matrix[:, 0:dimensions]
projected_data = np.dot(filtered_svd_matrix.T, features)
logging.info("Linear Discriminant Analysis computed")
return projected_data
else:
logging.basicConfig(level=logging.ERROR, format="%(message)s", force=True)
logging.error("Dataset empty")
raise AssertionError
def test_linear_discriminant_analysis() -> None:
# Create dummy dataset with 2 classes and 3 features
features = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]])
labels = np.array([0, 0, 0, 1, 1])
classes = 2
dimensions = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(AssertionError) as error_info:
projected_data = linear_discriminant_analysis(
features, labels, classes, dimensions
)
if isinstance(projected_data, np.ndarray):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes"
)
assert error_info.type is AssertionError
def test_principal_component_analysis() -> None:
features = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
dimensions = 2
expected_output = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]])
with pytest.raises(AssertionError) as error_info:
output = principal_component_analysis(features, dimensions)
if not np.allclose(expected_output, output):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()