forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lamberts_ellipsoidal_distance.py
85 lines (68 loc) · 3.39 KB
/
lamberts_ellipsoidal_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
AXIS_A = 6378137.0
AXIS_B = 6356752.314245
EQUATORIAL_RADIUS = 6378137
def lamberts_ellipsoidal_distance(
lat1: float, lon1: float, lat2: float, lon2: float
) -> float:
"""
Calculate the shortest distance along the surface of an ellipsoid between
two points on the surface of earth given longitudes and latitudes
https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
NOTE: This algorithm uses geodesy/haversine_distance.py to compute central angle,
sigma
Representing the earth as an ellipsoid allows us to approximate distances between
points on the surface much better than a sphere. Ellipsoidal formulas treat the
Earth as an oblate ellipsoid which means accounting for the flattening that happens
at the North and South poles. Lambert's formulae provide accuracy on the order of
10 meteres over thousands of kilometeres. Other methods can provide
millimeter-level accuracy but this is a simpler method to calculate long range
distances without increasing computational intensity.
Args:
lat1, lon1: latitude and longitude of coordinate 1
lat2, lon2: latitude and longitude of coordinate 2
Returns:
geographical distance between two points in metres
>>> from collections import namedtuple
>>> point_2d = namedtuple("point_2d", "lat lon")
>>> SAN_FRANCISCO = point_2d(37.774856, -122.424227)
>>> YOSEMITE = point_2d(37.864742, -119.537521)
>>> NEW_YORK = point_2d(40.713019, -74.012647)
>>> VENICE = point_2d(45.443012, 12.313071)
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters"
'254,351 meters'
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *NEW_YORK):0,.0f} meters"
'4,138,992 meters'
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *VENICE):0,.0f} meters"
'9,737,326 meters'
"""
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
# Equation Parameters
# https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
flattening = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
b_lat1 = atan((1 - flattening) * tan(radians(lat1)))
b_lat2 = atan((1 - flattening) * tan(radians(lat2)))
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
sigma = haversine_distance(lat1, lon1, lat2, lon2) / EQUATORIAL_RADIUS
# Intermediate P and Q values
p_value = (b_lat1 + b_lat2) / 2
q_value = (b_lat2 - b_lat1) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
x_numerator = (sin(p_value) ** 2) * (cos(q_value) ** 2)
x_demonimator = cos(sigma / 2) ** 2
x_value = (sigma - sin(sigma)) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
y_numerator = (cos(p_value) ** 2) * (sin(q_value) ** 2)
y_denominator = sin(sigma / 2) ** 2
y_value = (sigma + sin(sigma)) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()