-
Notifications
You must be signed in to change notification settings - Fork 1
/
ts_classification_6.py
115 lines (91 loc) · 3 KB
/
ts_classification_6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from pyts.classification import KNeighborsClassifier
from sklearn.metrics import (
accuracy_score,
auc,
classification_report,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
from tslearn.piecewise import SymbolicAggregateApproximation
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from music import MusicDB
"""CLASSIFICAZIONE CON SAX E KNN DTW"""
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("KNN-TimeSeries-Sax-Dtw Confusion matrix", "true"),
]
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="OrRd", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
# Carico il dataframe
musi = MusicDB()
print(musi.df.info())
print(musi.feat["enc_genre"].unique())
X_no = musi.df
y = musi.feat["enc_genre"] # classe targed ovvero genere con l'encoding
# normalizzazione con mean variance
scaler = TimeSeriesScalerMeanVariance()
X_no = pd.DataFrame(
scaler.fit_transform(musi.df.values).reshape(
musi.df.values.shape[0], musi.df.values.shape[1]
)
)
X_no.index = musi.df.index
# approssimazione con sax
sax = SymbolicAggregateApproximation(n_segments=130, alphabet_size_avg=20)
X1 = sax.fit_transform(X_no)
print(X1.shape)
X = np.squeeze(X1)
print(X.shape)
# Classification
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=100, stratify=y
)
# classificazione base knn
knn = KNeighborsClassifier(metric="dtw_sakoechiba", n_neighbors=21, weights="distance")
knn.fit(X_train, y_train)
# Apply on the test set and evaluate the performance
print("Apply on the test set and evaluate the performance: \n")
y_pred = knn.predict(X_test)
print("Accuracy %s" % accuracy_score(y_test, y_pred))
print("F1-score %s" % f1_score(y_test, y_pred, average=None))
print(classification_report(y_test, y_pred))
draw_confusion_matrix(knn, X_test, y_test)
"""ROC CURVE"""
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred)
for i in range(8):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(8):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("KNN-TimeSeries-Sax-Dtw Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()