-
Notifications
You must be signed in to change notification settings - Fork 1
/
decision_tree_sav_oldsplitting.py
289 lines (232 loc) · 8.66 KB
/
decision_tree_sav_oldsplitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn.metrics import (
accuracy_score,
auc,
classification_report,
confusion_matrix,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
import utils
os.environ["PATH"] += (
os.pathsep
+ "C:/Users/saverio/Desktop/Data Mining/DataMiningProject/venvv/Lib/site-packages/graphviz/bin"
)
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("Decision Tree Confusion matrix", "true"),
]
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="OrRd", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
def report(results, n_top=3):
for i in range(1, n_top + 1):
candidates = np.flatnonzero(results["rank_test_score"] == i)
for candidate in candidates:
print("Model with rank: {0}".format(i))
print(
"Mean validation score: {0:.3f} (std: {1:.3f})".format(
results["mean_test_score"][candidate],
results["std_test_score"][candidate],
)
)
print("Parameters: {0}".format(results["params"][candidate]))
print("")
def load_data(path):
df = utils.load_tracks(path, outliers=False, buckets="discrete")
# feature to reshape
label_encoders = dict()
column2encode = [
("album", "comments"),
("album", "favorites"),
("album", "listens"),
("album", "type"),
("artist", "comments"),
("artist", "favorites"),
("track", "duration"),
("track", "comments"),
("track", "favorites"),
("track", "language_code"),
("track", "license"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
label_encoders[col] = le
print(df.info())
return df
def tuning_param(df, target1, target2):
# split dataset train and set
attributes = [col for col in df.columns if col != (target1, target2)]
X = df[attributes].values
y = df[target1, target2]
X_train, X_test, y_train, y_test = train_test_split(
X, y, stratify=y, test_size=0.25
)
print(X_train.shape, X_test.shape)
# tuning hyperparam with randomize search
# This has two main benefits over an exhaustive search:
# A budget can be chosen independent of the number of parameters and possible values.
# Adding parameters that do not influence the performance does not decrease efficiency.
# RANDOM
print("Parameter Tuning: \n")
# tuning parameters with random search
print("Search best parameters: \n")
param_list = {
"max_depth": [None] + list(np.arange(2, 50)),
"min_samples_split": [2, 5, 10, 15, 20, 30, 50, 100, 150],
"min_samples_leaf": [1, 2, 5, 10, 15, 20, 30, 50, 100, 150],
"criterion": ["gini", "entropy"],
}
clf = DecisionTreeClassifier(
criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1
)
random_search = RandomizedSearchCV(clf, param_distributions=param_list, n_iter=100)
random_search.fit(X, y)
report(random_search.cv_results_, n_top=3)
def tuning_param_gridsearch(df, target1, target2):
# split dataset train and set
attributes = [col for col in df.columns if col != (target1, target2)]
X = df[attributes].values
y = df[target1, target2]
X_train, X_test, y_train, y_test = train_test_split(
X, y, stratify=y, test_size=0.20
)
print(X_train.shape, X_test.shape)
clf = DecisionTreeClassifier(
criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1
)
def report(results, n_top=3):
for i in range(1, n_top + 1):
candidates = np.flatnonzero(results["rank_test_score"] == i)
for candidate in candidates:
print("Model with rank: {0}".format(i))
print(
"Mean validation score: {0:.3f} (std: {1:.3f})".format(
results["mean_test_score"][candidate],
results["std_test_score"][candidate],
)
)
print("Parameters: {0}".format(results["params"][candidate]))
print("")
param_list = {
"max_depth": [None] + list(np.arange(2, 50)),
"min_samples_split": list(np.arange(2, 50)),
"min_samples_leaf": list(np.arange(2, 50)),
"criterion": ["gini", "entropy"],
}
grid_search = GridSearchCV(clf, param_grid=param_list)
grid_search.fit(X, y)
clf = grid_search.best_estimator_
print(report(grid_search.cv_results_, n_top=3))
def build_model(
df, target1, target2, min_samples_split, min_samples_leaf, max_depth, criterion
):
# split dataset train and set
attributes = [col for col in df.columns if col != (target1, target2)]
X = df[attributes].values
y = df[target1, target2]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.20, stratify=y
)
print(X_train.shape, X_test.shape)
# build a model
clf = DecisionTreeClassifier(
criterion=criterion,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
)
clf.fit(X_train, y_train)
# value importance
for col, imp in zip(attributes, clf.feature_importances_):
print(col, imp)
# Apply the decision tree on the training set
print("Apply the decision tree on the training set: \n")
y_pred = clf.predict(X_train)
print("Accuracy %s" % accuracy_score(y_train, y_pred))
print("F1-score %s" % f1_score(y_train, y_pred, average=None))
print(classification_report(y_train, y_pred))
confusion_matrix(y_train, y_pred)
# Apply the decision tree on the test set and evaluate the performance
print("Apply the decision tree on the test set and evaluate the performance: \n")
y_pred = clf.predict(X_test)
print("Accuracy %s" % accuracy_score(y_test, y_pred))
print("F1-score %s" % f1_score(y_test, y_pred, average=None))
print(classification_report(y_test, y_pred))
confusion_matrix(y_test, y_pred)
# ROC Curve
from sklearn.preprocessing import LabelBinarizer
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred)
for i in range(4):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
print(roc_auc)
plt.figure(figsize=(8, 5))
for i in range(4):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate", fontsize=20)
plt.ylabel("True Positive Rate", fontsize=20)
plt.tick_params(axis="both", which="major", labelsize=22)
plt.legend(loc="lower right", fontsize=14, frameon=False)
plt.show()
# Model Accuracy, how often is the classifier correct?
draw_confusion_matrix
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
# confusion matrix
print("\033[1m" "Confusion matrix" "\033[0m")
draw_confusion_matrix(clf, X_test, y_test)
print()
for col, imp in zip(attributes, clf.feature_importances_):
print(col, imp)
top_n = 10
feat_imp = pd.DataFrame(columns=["columns", "importance"])
for col, imp in zip(attributes, clf.feature_importances_):
feat_imp = feat_imp.append(
{"columns": col, "importance": imp}, ignore_index=True
)
print(feat_imp)
feat_imp.sort_values(by="importance", ascending=False, inplace=True)
feat_imp = feat_imp.iloc[:top_n]
feat_imp.plot(
title="Top 10 features contribution",
x="columns",
fontsize=8.5,
rot=15,
y="importance",
kind="bar",
colormap="Pastel1",
)
plt.show()
tracks = load_data("data/tracks.csv")
# tuning_param(tracks, "album", "type")
# tuning_param_gridsearch(tracks, "album", "type")
build_model(tracks, "album", "type", 100, 100, 8, "entropy")
# build_model(tracks, "album", "type", 2, 1, 20, "entropy")