-
Notifications
You must be signed in to change notification settings - Fork 3
/
TODO
31 lines (29 loc) · 1.26 KB
/
TODO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
* Use eaxis for prettier labels.
* If the plots were based on ggplot2, we could use plotly to make them
interactive:
https://ggplot2.tidyverse.org/articles/extending-ggplot2.html
* Make examples run faster (make data smaller). Move current examples
to tests/
* Fix all FIXMEs
* eafplot.default and .plot.eafdiff.side duplicate a lot of code.
* Create eafdiff plots with a single plot using two different colors.
* Profile memory/computation time to find bottle-necks.
* Implement fast algorithms from:
M. T. Jensen. Reducing the run-time complexity of multiobjective EAs: The
NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation,
7(5):503–515, 2003.
* Reimplement eafdiff.pl and eafplot.pl in Python/R
* Convert eaf->attained to a bitmask.
* Second order eaf-test: https://github.com/hjalves/eaftest
* Use plot_ly to plot in 3D and parallel coordinates
* Use heatmaps to plot in 3D (when comparing 2 algorithms plot the minimum
value between the two).
* Interactive EAF:
plot(cars) # scatterplot
while(TRUE) {
coord <- locator(n=2,type="p", pch=4,col='red',lwd=2)
print(coord)
if (is.null(coord)) break
plot(cars, xlim = range(coord$x), ylim = range(coord$y))
points(as.data.frame(coord), pch=4,col='blue',lwd=2)
}