-
Notifications
You must be signed in to change notification settings - Fork 1
/
playground.py
1165 lines (944 loc) · 44.5 KB
/
playground.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import logging
import math
import os
import sys
import time
import matplotlib.pyplot as plt
import numpy as np
import seaborn
import spacy
import torch
import torch.nn as nn
import torch.nn.functional as F
#import wget
from torchtext import data, datasets
from util import setup_logging
seaborn.set_context(context="talk")
VERBOSE = False
"""
Implemented according to tutorial http://nlp.seas.harvard.edu/2018/04/03/attention.html
"""
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture. Base for this and many
other models.
"""
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask), src_mask,
tgt, tgt_mask)
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
# TODO: inputs to Sublayer are ALWAYS normalized, initial
# Embeddings are normalized too!
return x + self.dropout(sublayer(self.norm(x)))
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
# TODO: Why norm at the end?
return self.norm(x)
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
# 2 because there are 2 sublayers in each block
# 1st sublayers does multi-head attention
# 2nd sublayer does position-wise feed forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask=None):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
"""
:param x:
:param memory: contains encoded input
:param src_mask:
:param tgt_mask:
:return:
"""
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
def subsequent_mask(size):
"Mask out subsequent positions."
# In[6]: subsequent_mask(5)[0]
# Out[6]:
# tensor([[1, 0, 0, 0, 0],
# [1, 1, 0, 0, 0],
# [1, 1, 1, 0, 0],
# [1, 1, 1, 1, 0],
# [1, 1, 1, 1, 1]], dtype=torch.uint8)
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def scaled_dot_product_attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
if VERBOSE:
print("Computing attention:")
print(f"Q shape:{query.shape}")
print(f"K shape:{key.shape}")
print(f"V shape:{value.shape}")
# compute similarity of query-to-key vectors via dot product
# normalize it via length of dimension
#
# From the paper:
# The two most commonly used attention functions are
# additive attention
# dot-product (multiplicative) attention.
#
# Dot-product attention is identical to our algorithm, except for the scaling factor of 1/√d_k.
# Additive attention computes the compatibility function using a feed-forward network with a single hidden layer.
# While the two are similar in theoretical complexity, dot-product attention is much faster and more
# space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
#
# While for small values of d_k the two mechanisms perform similarly, additive attention outperforms
# dot product attention without scaling for larger values of d_k. We suspect that for large values of
# d_k, the dot products grow large in magnitude, pushing the softmax function into regions where it has
# extremely small gradients
#
# To illustrate why the dot products get large, assume that the components of
# q and k are independent random variables with mean 0 and variance 1. Then their dot product, q⋅k= i from {1 ... d_k} ∑qiki,
# has mean 0 and variance d_k.
# To counteract this effect, we scale the dot products by 1/√d_k.
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
# scores has shape
# BATCH x HEADS x LEN_QUERY x LEN_KEY
if mask is not None:
# masked fill is broadcastable
# dimensions 1 and 2 are broadcasted
# mask through the dimension
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
# Mask has shape BATCH x 1 x S x LEN
# where S is: 1 for src sequence data
# LEN for tgt sequence data
# NOTICE: Dropout on attention
if dropout is not None:
p_attn = dropout(p_attn)
# The result is
# KEY aware query representation
# It will have length BATCH x HEADS x Query_LEN x d_k
# where there is Query_LEN d_k vectors, each mixed from learned
# weighted average of value vectors
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, heads, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % heads == 0
# We assume d_v always equals d_k
self.d_k = d_model // heads # dimensionality over one head
self.h = heads
# 4 - for query, key, value transformation + output transformation
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
# Query has shape BATCH x LEN x D_MODEL
# Mask has shape BATCH x S x LEN
# where S is: 1 for src sequence data
# LEN for tgt sequence data
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
# mask is now BATCH x 1 x S x LEN
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
# If query,key,value are of size bsz x length x d_model
# this code transforms query, key and value with d_model x d_model matrices
# and splits each into bsz x h (number of splits) x length x d_k
# query_, key_, value_ = \
# [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
# for l, x in zip(self.linears, (query, key, value))]
# Rewritten into more clear representation
query = self.linears[0](query).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
key = self.linears[1](key).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
value = self.linears[2](value).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
# assert torch.equal(query, query_) and torch.equal(key, key_) and torch.equal(value, value_)
# 2) Apply attention on all the projected vectors in batch.
# x has shape bsz x length x d_model
x, self.attn = scaled_dot_product_attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
"""
From the paper:
"In addition to attention sub-layers, each of the layers in our encoder and decoder contains
a fullyconnected feed-forward network, which is applied to each position separately and
identically. This consists of two linear transformations with a ReLU activation in between.
FFN(x) = max(0,xW1+b1)W2+b2
While the linear transformations are the same across different positions, they use
different parametersfrom layer to layer. Another way of describing this is as
two convolutions with kernel size 1. The dimensionality of input and output is
dmodel= 512, and the inner-layer has dimensionality dff= 2048."
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
# Embeddings are learned jointly
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
"""
Hypothesis behind encodings
From the paper:
"Wechose this function because we hypothesized it would allow the model to easily learn to
attend by relative positions, since for any fixed offset k,PE_{pos+k} can be represented
as a linear function of PE_{pos}."
=========================================================
Whether to choose fixed or learned positional encodings
"We also experimented with using learned positional embeddings nstead, and found that the two
versions produced nearly identical results (see Table 3 row (E)). We chose the sinusoidal version
because it may allow the model to extrapolate to sequence lengths longer than the ones encountered
during training."
In my words:
Since sinusoidal positional encodings are well-defined, they can easily represent positions longer than
any of those in training data. When learning the positional encodings, the encodings for these positions
are just a random mess.
"""
def __init__(self, d_model, dropout, max_len=5000):
"""
Tensor pe has shape batch_size x max_len x d_model
"""
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).type(torch.float)
div_term = torch.exp(torch.arange(0, d_model, 2).type(torch.float) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
pe.requires_grad = False
# Include buffer in state dict
# Better clarity and also the buffer is saved with the model parameters in case of
# saving model's state dict
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
# NOTICE: dropout on embeddings
return self.dropout(x)
def subsequent_mask_demo():
plt.figure(figsize=(5, 5))
plt.imshow(subsequent_mask(20)[0])
def PEncodings_demo():
plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(torch.zeros(1, 100, 20))
plt.plot(np.arange(100), y[0, :, 0:8].data.numpy())
plt.legend(["dim %d" % p for p in range(0, 8)])
def create_transformer_model(src_vocab_size, tgt_vocab_size, N=6,
d_model=512, d_ff=2048, h=8, dropout=0.1):
"Helper: Construct a model from hyperparameters."
# d_ff is dimensionality of the inner layer
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn),
c(ff), dropout), N),
# Sequential secures embedding + positional embedding
# TODO: but why copy of position is needed?
nn.Sequential(Embeddings(d_model, src_vocab_size), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab_size), c(position)),
Generator(d_model, tgt_vocab_size))
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
def model_demo():
# Small example model.
tmp_model = create_transformer_model(10, 10, 2)
# L = 3
# D_model = 512
# BSZ = 2
# Q = K = V = torch.randn(BSZ, L, D_model)
# h = 8
#
# modl = MultiHeadedAttention(h = h, d_model=D_model )
# f = modl.forward(Q,K,V)
# fv = modl.forward(Q,K,V)
class Batch:
"Object for holding a batch of data with mask during training."
def __init__(self, src, trg=None, pad=0):
self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if trg is not None:
self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = \
self.make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()
@staticmethod
def make_std_mask(tgt, pad):
"Create a mask to hide padding and future words."
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)
return tgt_mask
def run_epoch(data_iter, model,loss_compute):
"Standard Training and Logging Function"
start = time.time()
total_tokens = 0
total_loss = 0
tokens = 0
for i, batch in enumerate(data_iter):
# print("-" * 10 + "SRC" + "-" * 10)
# print(totext(batch.src, vocab[0]))
# print("-" * 10 + "TGT" + "-" * 10)
# print(totext(batch.trg, vocab[1]))
# print("-" * 30)
out = model.forward(batch.src, batch.trg,
batch.src_mask, batch.trg_mask)
loss = loss_compute(out, batch.trg_y, batch.ntokens.type(torch.float))
total_loss += loss.item()
total_tokens += batch.ntokens.item()
tokens += batch.ntokens.item()
# if i % 50 == 1:
# elapsed = (time.time() - start) + 1e-20
# print(f"Epoch Step: {i} Loss: {loss / batch.ntokens.type(torch.float)} "
# f"Tokens per Sec: {tokens / elapsed}")
# start = time.time()
# tokens = 0
return total_loss / total_tokens
global max_src_in_batch, max_tgt_in_batch
# Sentence pairs were batched together by approximate sequence length.
# Each training batch contained a set of sentence pairs containing approximately 25000 source tokens and 25000 target tokens.
def batch_size_fn(new, count, sofar):
"Keep augmenting batch and calculate total number of tokens + padding."
global max_src_in_batch, max_tgt_in_batch
if count == 1:
max_src_in_batch = 0
max_tgt_in_batch = 0
max_src_in_batch = max(max_src_in_batch, len(new.src))
max_tgt_in_batch = max(max_tgt_in_batch, len(new.trg) + 2)
src_elements = count * max_src_in_batch
tgt_elements = count * max_tgt_in_batch
return max(src_elements, tgt_elements)
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step=None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def hyperparam_demo():
# Three settings of the lrate hyperparameters.
opts = [NoamOpt(512, 1, 4000, None),
NoamOpt(512, 1, 8000, None),
NoamOpt(256, 1, 4000, None)]
plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])
plt.legend(["512:4000", "512:8000", "256:4000"])
plt.show()
class LabelSmoothing(nn.Module):
"""
Implement label smoothing according to https://arxiv.org/pdf/1512.00567.pdf
"""
def __init__(self, vocab_size, padding_idx, smoothing=0.0):
"""
:param vocab_size:
:param padding_idx: index of padding token in vocabulary
:param smoothing: Amount of probability to be smoothed around vocabulary
(the bigger this is, the less confident model is and more aggresive smoothing is applied)
"""
super(LabelSmoothing, self).__init__()
# if size average is False on loss, losses are summed over minibatch and dimensions
# otherwise they are averaged
self.criterion = nn.KLDivLoss(size_average=False)
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = vocab_size
self.true_dist = None
def forward(self, x, target):
"""
Label smoothing implemented using the KL div loss. Instead of using a one-hot target distribution,
we create a distribution that has confidence of the correct word
and the rest of the smoothing mass distributed throughout the vocabulary.
:param x: (batch * outlen) x VOCAB_LEN
:param target: (batch * outlen)
:return:
"""
assert x.size(1) == self.size
true_dist = x.data.clone()
# smooth rest of the mass (1-confidence) equally through vocabulary
true_dist.fill_(self.smoothing / (self.size - 2))
# set confidence mass for correct words
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
# mask confidence for padding
true_dist[:, self.padding_idx] = 0
# check whether padding idx is in-between targets
mask = torch.nonzero(target.data == self.padding_idx)
if mask.nelement() > 0:
# if so, set all those 'probabilities' to 0.0
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
self.true_dist.requires_grad = False
# return KL div between x and this distribution
return self.criterion(x, true_dist)
def labelsmoothing_demo1():
"""
Here we can see an example of how the mass is distributed to the words based on confidence.
"""
# Example of label smoothing.
crit = LabelSmoothing(vocab_size=5, padding_idx=0, smoothing=0.4)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.2, 0.7, 0.1, 0],
[0, 0.2, 0.7, 0.1, 0]])
v = crit(predict.log(),
torch.LongTensor([2, 1, 0]))
# Show the target distributions expected by the system.
plt.imshow(crit.true_dist)
plt.show()
def labelsmoothing_demo2():
"""
Label smoothing actually starts to penalize the model
if it gets very confident about a given choice.
"""
crit = LabelSmoothing(5, 0, 0.1)
def loss(x):
d = x + 3 * 1
predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
])
# print(predict)
return crit(predict.log(),
torch.LongTensor([1])).item()
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])
plt.show()
class SingleGPULossCompute:
"A simple loss compute and train function."
def __init__(self, generator, criterion, opt=None):
self.generator = generator
self.criterion = criterion
self.opt = opt
def __call__(self, x, y, norm):
# x has shape batch x outlen x d
# y has shape batch x outlen
x = self.generator(x)
# x has shape batch x outlen x vocab
# x changed to shape (batch * outlen) x VOCAB_LEN
# y changed to shape (batch * outlen)
loss = self.criterion(x.contiguous().view(-1, x.size(-1)),
y.contiguous().view(-1)) / norm
if self.opt is not None:
loss.backward()
self.opt.step()
self.opt.optimizer.zero_grad()
return loss.data.item() * norm
def data_gen(V, batch, nbatches, device):
"""
Synthethic data generator
"Generate random data for a src-tgt copy task."
"""
for i in range(nbatches):
data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10))).to(device)
data.requires_grad = False
data[:, 0] = 1
src = data
tgt = torch.cat((data, data), 1)
yield Batch(src, tgt, 0)
def train_on_synthethic():
vocab_size = 11 # Vocabulary size
batch_size = 256
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
criterion = LabelSmoothing(vocab_size=vocab_size, padding_idx=0, smoothing=0.0)
model = create_transformer_model(src_vocab_size=vocab_size, tgt_vocab_size=vocab_size, N=3).to(device)
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400,
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
for epoch in range(2):
model.train()
run_epoch(data_gen(vocab_size, batch_size, nbatches=20, device=device), model,
SingleGPULossCompute(model.generator, criterion, model_opt))
model.eval()
print(run_epoch(data_gen(vocab_size, batch_size, nbatches=5, device=device), model,
SingleGPULossCompute(model.generator, criterion, None)))
model.eval()
print("Demo evaluation:")
input = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
src = torch.LongTensor([input]).to(device)
print(f"Input: {input}")
src_mask = torch.ones(1, 1, 10).to(device)
decoded = greedy_decode(model, src, src_mask, max_len=20, start_symbol=1)
print(f"Output: {list(decoded.cpu().numpy()[0])}")
class DataIterator(data.Iterator):
def create_batches(self):
if self.train:
def pool(d, random_shuffler):
# Iterate over 100*batch chunks
# Do the local shuffling over 100 batches
for p in data.batch(d, self.batch_size * 100):
# Sorted by maximum length of src/target sentence
p_batch = data.batch(
sorted(p, key=self.sort_key),
self.batch_size, self.batch_size_fn)
for b in random_shuffler(list(p_batch)):
yield b
self.batches = pool(self.data(), self.random_shuffler)
else:
self.batches = []
for b in data.batch(self.data(), self.batch_size,
self.batch_size_fn):
self.batches.append(sorted(b, key=self.sort_key))
def rebatch(pad_idx, batch):
"Fix order in torchtext to match ours"
src, trg = batch.src.transpose(0, 1), batch.trg.transpose(0, 1)
return Batch(src, trg, pad_idx)
def pretrained_IWSLT_demo():
"""
Demo on IWSLT German-English Translation task
"""
spacy_de = spacy.load('de')
spacy_en = spacy.load('en')
def tokenize_de(text):
return [tok.text for tok in spacy_de.tokenizer(text)]
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
BOS_WORD = '<s>'
EOS_WORD = '</s>'
BLANK_WORD = "<blank>"
SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD)
TGT = data.Field(tokenize=tokenize_en, init_token=BOS_WORD,
eos_token=EOS_WORD, pad_token=BLANK_WORD)
MAX_LEN = 100
train, val, test = datasets.IWSLT.splits(
exts=('.de', '.en'), fields=(SRC, TGT),
filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and
len(vars(x)['trg']) <= MAX_LEN)
MIN_FREQ = 2
SRC.build_vocab(train.src, min_freq=MIN_FREQ)
TGT.build_vocab(train.trg, min_freq=MIN_FREQ)
BATCH_SIZE = 100
valid_iter = DataIterator(val, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
# using the pre_trained model from https://s3.amazonaws.com/opennmt-models/iwslt.pt
if not os.path.exists("iwslt.pt"):
wget.download("https://s3.amazonaws.com/opennmt-models/iwslt.pt")
model = torch.load("iwslt.pt")
for i, batch in enumerate(valid_iter):
src = batch.src.transpose(0, 1)[:1]
src_mask = (src != SRC.vocab.stoi["<blank>"]).unsqueeze(-2)
out = greedy_decode(model, src, src_mask,
max_len=60, start_symbol=TGT.vocab.stoi["<s>"])
print("Source:", end="\t")
for i in range(0, src.size(1)):
sym = SRC.vocab.itos[src[0, i]]
print(sym, end=" ")
print()
print("Translation:", end="\t")
for i in range(1, out.size(1)):
sym = TGT.vocab.itos[out[0, i]]
if sym == "</s>": break
print(sym, end=" ")
print()
print("Target:", end="\t")
for i in range(1, batch.trg.size(0)):
sym = TGT.vocab.itos[batch.trg.data[i, 0]]
if sym == "</s>": break
print(sym, end=" ")
print()
def totext(batch, vocab, batch_first=True, remove_specials=False, check_for_zero_vectors=True, pad_token='<blank>',
eos_token=None, sep=" "):
textlist = []
if not batch_first:
batch = batch.transpose(0, 1)
for ex in batch:
if remove_specials:
textlist.append(
sep.join(
[vocab.itos[ix.item() if hasattr(ix, "item") else ix] for ix in ex
if ix != vocab.stoi[pad_token] and eos_token is not None and ix != vocab.stoi["<eos>"]]))
else:
if check_for_zero_vectors:
text = []
for ix in ex:
text.append(vocab.itos[ix.item() if hasattr(ix, "item") else ix])
textlist.append(sep.join(text))
else:
textlist.append(sep.join([vocab.itos[ix.item() if hasattr(ix, "item") else ix] for ix in ex]))
return textlist
def train_IWSLT():
"""
Train on IWSLT German-English Translation task
"""
spacy_de = spacy.load('de')
spacy_en = spacy.load('en')
def tokenize_de(text):
return [tok.text for tok in spacy_de.tokenizer(text)]
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
BOS_WORD = '<s>'
EOS_WORD = '</s>'
BLANK_WORD = "<blank>"
SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD)
TGT = data.Field(tokenize=tokenize_en, init_token=BOS_WORD,
eos_token=EOS_WORD, pad_token=BLANK_WORD)
MAX_LEN = 100
train, val, test = datasets.IWSLT.splits(
exts=('.de', '.en'), fields=(SRC, TGT),
filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and
len(vars(x)['trg']) <= MAX_LEN)
MIN_FREQ = 2
SRC.build_vocab(train.src, min_freq=MIN_FREQ)
TGT.build_vocab(train.trg, min_freq=MIN_FREQ)
pad_idx = TGT.vocab.stoi["<blank>"]
model = create_transformer_model(len(SRC.vocab), len(TGT.vocab), N=6).to(device)
criterion = LabelSmoothing(vocab_size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1)
BATCH_SIZE = 1024
# These examples are shuffled
train_iter = DataIterator(train, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=True)
# These examples are not shuffled
valid_iter = DataIterator(val, batch_size=BATCH_SIZE, device=device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 2000,
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
for epoch in range(10):
model.train()
# run_epoch((rebatch(pad_idx, b) for b in train_iter),
# model,
# SingleGPULossCompute(model.generator, criterion, model_opt))
model.eval()
loss = run_epoch((rebatch(pad_idx, b) for b in valid_iter),
model,
SingleGPULossCompute(model.generator, criterion, opt=None))
print(loss)
logging.info(f"Validation Loss: {loss}")
def greedy_decode(model, src, src_mask, max_len, start_symbol):
memory = model.encode(src, src_mask)
ys = torch.ones(memory.shape[0], 1).fill_(start_symbol).type_as(src.data)
for i in range(max_len - 1):
out = model.decode(memory, src_mask,
ys,
subsequent_mask(ys.size(1))
.type_as(src.data))
log_prob = model.generator(out[:, -1])
_, next_word = torch.max(log_prob, dim=1)
ys = torch.cat([ys, next_word.unsqueeze(-1)], dim=1)
return ys[:, 1:] # do not return start token
class Beam():
''' Beam search '''
def __init__(self, size, pad, bos, eos, device=False):
self.size = size
self._done = False
self.PAD = pad
self.BOS = bos
self.EOS = eos
# The score for each translation on the beam.
self.scores = torch.zeros((size,), dtype=torch.float, device=device)
self.all_scores = []
# The backpointers at each time-step.
self.prev_ks = []
# The outputs at each time-step.
# Initialize to [BOS, PAD, PAD ..., PAD]
self.next_ys = [torch.full((size,), self.PAD, dtype=torch.long, device=device)]
self.next_ys[0][0] = self.BOS
def get_current_state(self):
"Get the outputs for the current timestep."
return self.get_tentative_hypothesis()
def get_current_origin(self):
"Get the backpointers for the current timestep."
return self.prev_ks[-1]
@property
def done(self):
return self._done
def advance(self, word_logprob):
"Update beam status and check if finished or not."
num_words = word_logprob.size(1)
# Sum the previous scores.
if len(self.prev_ks) > 0:
beam_lk = word_logprob + self.scores.unsqueeze(1).expand_as(word_logprob)
else:
# in initial case,
beam_lk = word_logprob[0]
flat_beam_lk = beam_lk.view(-1)
best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True)
self.all_scores.append(self.scores)
self.scores = best_scores
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
prev_k = best_scores_id / num_words
self.prev_ks.append(prev_k)
self.next_ys.append(best_scores_id - prev_k * num_words)
# End condition is when top-of-beam is EOS.
if self.next_ys[-1][0].item() == self.EOS:
self._done = True
self.all_scores.append(self.scores)
return self._done
def sort_scores(self):
"Sort the scores."
return torch.sort(self.scores, 0, True)
def get_the_best_score_and_idx(self):
"Get the score of the best in the beam."
scores, ids = self.sort_scores()
return scores[1], ids[1]
def get_tentative_hypothesis(self):
"Get the decoded sequence for the current timestep."
if len(self.next_ys) == 1:
dec_seq = self.next_ys[0].unsqueeze(1)
else:
_, keys = self.sort_scores()
hyps = [self.get_hypothesis(k) for k in keys]
hyps = [[self.BOS] + h for h in hyps]
dec_seq = torch.LongTensor(hyps)
return dec_seq
def get_hypothesis(self, k):
""" Walk back to construct the full hypothesis. """
hyp = []
for j in range(len(self.prev_ks) - 1, -1, -1):
hyp.append(self.next_ys[j + 1][k])
k = self.prev_ks[j][k]
return list(map(lambda x: x.item(), hyp[::-1]))
if __name__ == "__main__":
setup_logging(os.path.basename(sys.argv[0]).split(".")[0],
logpath="logs/",
config_path="configurations/logging.yml")
# train_on_synthethic()
# labelsmoothing_demo1()
# labelsmoothing_demo2()
# hyperparam_demo()
# pretrained_IWSLT_demo()
train_IWSLT()