forked from QuantConnect/Lean.DataSource.NasdaqDataLink
-
Notifications
You must be signed in to change notification settings - Fork 1
/
DemostrationWithIndicator.py
67 lines (55 loc) · 2.96 KB
/
DemostrationWithIndicator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
### <summary>
### The algorithm creates new indicator value with the existing indicator method by Indicator Extensions
### Demonstration of using the external custom Nasdaq data to request the IBM and FB daily data
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="using quantconnect" />
### <meta name="tag" content="custom data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="indicator classes" />
### <meta name="tag" content="plotting indicators" />
### <meta name="tag" content="charting" />
class DemostrationWithIndicator(QCAlgorithm):
# Initialize the data and resolution you require for your strategy
def Initialize(self):
self.SetStartDate(2014,1,1)
self.SetEndDate(2018,1,1)
self.SetCash(25000)
self.ibm = 'WIKI/IBM'
self.fb = 'WIKI/FB'
# NasdaqDataLink.SetAuthCode("your-api-key")
# Define the symbol and "type" of our generic data
self.AddData(NasdaqDataLink, self.ibm, Resolution.Daily)
self.AddData(NasdaqCustomColumns, self.fb, Resolution.Daily)
# Set up default Indicators, these are just 'identities' of the closing price
self.ibm_sma = self.SMA(self.ibm, 1, Resolution.Daily)
self.fb_sma = self.SMA(self.fb, 1, Resolution.Daily)
# This will create a new indicator whose value is fb_sma / ibm_sma
self.ratio = IndicatorExtensions.Over(self.fb_sma, self.ibm_sma)
# Plot indicators each time they update using the PlotIndicator function
self.PlotIndicator("Ratio", self.ratio)
self.PlotIndicator("Data", self.ibm_sma, self.fb_sma)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
def OnData(self, data):
# Wait for all indicators to fully initialize
if not (self.ibm_sma.IsReady and self.fb_sma.IsReady and self.ratio.IsReady): return
if not self.Portfolio.Invested and self.ratio.Current.Value > 1:
self.MarketOrder(self.ibm, 100)
elif self.ratio.Current.Value < 1:
self.Liquidate()
class NasdaqCustomColumns(NasdaqDataLink):
def __init__(self):
self.ValueColumnName = "adj. close"