-
Notifications
You must be signed in to change notification settings - Fork 121
/
main.cpp
95 lines (78 loc) · 3.37 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
Copyright (C) 2017 Liangliang Nan
https://3d.bk.tudelft.nl/liangliang/ - liangliang.nan@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "../basic/logger.h"
#include "../model/point_set.h"
#include "../model/map.h"
#include "../method/method_global.h"
#include "../method/hypothesis_generator.h"
#include "../method/face_selection.h"
#include "../model/map_io.h"
#include "../model/point_set_io.h"
int main(int argc, char **argv)
{
// initialize the logger (this is not optional)
Logger::initialize();
// input point cloud file name
const std::string input_file = (argc > 1) ? argv[1] : std::string(POLYFIT_CODE_DIR) + "/../data/toy_data.bvg";
// output mesh file name
const std::string output_file = (argc > 2) ? argv[2] : std::string(POLYFIT_CODE_DIR) + "/../data/toy_data-result.obj";
// below are the default parameters (change these when necessary)
Method::lambda_data_fitting = 0.43;
Method::lambda_model_coverage = 0.27;
Method::lambda_model_complexity = 0.3;
// load point cloud from file
PointSet* pset = PointSetIO::read(input_file);
if (!pset) {
std::cerr << "failed loading point cloud from file: " << input_file << std::endl;
return EXIT_FAILURE;
}
// step 1: refine planes
std::cout << "refining planes..." << std::endl;
const std::vector<VertexGroup::Ptr>& groups = pset->groups();
if (groups.empty()) {
std::cerr << "planar segments do not exist" << std::endl;
return EXIT_FAILURE;
}
HypothesisGenerator hypothesis(pset);
hypothesis.refine_planes();
// step 2: generate face hypothesis
std::cout << "generating plane hypothesis..." << std::endl;
Map* mesh = hypothesis.generate();
if (!mesh) {
std::cerr << "failed generating candidate faces. Please check if the input point cloud has good planar segments" << std::endl;
return EXIT_FAILURE;
}
hypothesis.compute_confidences(mesh, false);
// step 3: face selection
std::cout << "optimization..." << std::endl;
const auto& adjacency = hypothesis.extract_adjacency(mesh);
FaceSelection selector(pset, mesh);
selector.optimize(adjacency, LinearProgramSolver::SCIP);
if (mesh->size_of_facets() == 0) {
std::cerr << "optimization failed: model has on faces" << std::endl;
return EXIT_FAILURE;
}
// now we don't need the point cloud anymore, and it can be deleted
delete pset;
// step 4: save result to file
if (MapIO::save(output_file, mesh))
std::cout << "reconstructed model saved to file: " << output_file << std::endl;
else {
std::cerr << "failed saving reconstructed model to file: " << output_file << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
};