-
Notifications
You must be signed in to change notification settings - Fork 0
/
IDHN.py
152 lines (115 loc) · 5.2 KB
/
IDHN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from utils.tools import *
from network import *
import os
import torch
import torch.optim as optim
import time
import numpy as np
torch.multiprocessing.set_sharing_strategy('file_system')
# IDHN(TMM2019)
# paper [Improved Deep Hashing with Soft Pairwise Similarity for Multi-label Image Retrieval](https://arxiv.org/abs/1803.02987)
# code [IDHN-Tensorflow](https://github.com/pectinid16/IDHN)
# [IDHN] epoch:75, bit:48, dataset:mirflickr, MAP:0.740, Best MAP: 0.740
def get_config():
config = {
"alpha": 0.5,
"gamma": 0.1,
"lambda": 0.1,
# "optimizer":{"type": optim.SGD, "optim_params": {"lr": 0.05, "weight_decay": 10 ** -5}, "lr_type": "step"},
"optimizer": {"type": optim.RMSprop, "optim_params": {"lr": 1e-5, "weight_decay": 10 ** -5}, "lr_type": "step"},
"info": "[IDHN]",
"resize_size": 256,
"crop_size": 224,
"batch_size": 128,
"net": AlexNet,
# "net":ResNet,
# "dataset": "cifar10",
"dataset": "cifar10-1",
# "dataset": "cifar10-2",
# "dataset": "coco",
# "dataset": "mirflickr",
# "dataset": "voc2012",
# "dataset": "imagenet",
# "dataset": "nuswide_21",
# "dataset": "nuswide_21_m",
# "dataset": "nuswide_81_m",
"epoch": 150,
"test_map": 15,
"save_path": "save/IDHN",
# "device":torch.device("cpu"),
"device": torch.device("cuda:1"),
"bit_list": [48],
}
config = config_dataset(config)
return config
class DPSHLoss(torch.nn.Module):
def __init__(self, config, bit):
super(DPSHLoss, self).__init__()
self.q = bit
self.U = torch.zeros(config["num_train"], bit).float().to(config["device"])
self.Y = torch.zeros(config["num_train"], config["n_class"]).float().to(config["device"])
def forward(self, u, y, ind, config):
u = u / (u.abs() + 1)
self.U[ind, :] = u.data
self.Y[ind, :] = y.float()
s = y @ self.Y.t()
norm = y.pow(2).sum(dim=1, keepdim=True).pow(0.5) @ self.Y.pow(2).sum(dim=1, keepdim=True).pow(0.5).t()
s = s / (norm + 0.00001)
M = (s > 0.99).float() + (s < 0.01).float()
inner_product = config["alpha"] * u @ self.U.t()
log_loss = torch.log(1 + torch.exp(-inner_product.abs())) + inner_product.clamp(min=0) - s * inner_product
mse_loss = (inner_product + self.q - 2 * s * self.q).pow(2)
loss1 = (M * log_loss + config["gamma"] * (1 - M) * mse_loss).mean()
loss2 = config["lambda"] * (u.abs() - 1).abs().mean()
return loss1 + loss2
def train_val(config, bit):
device = config["device"]
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
config["num_train"] = num_train
net = config["net"](bit).to(device)
optimizer = config["optimizer"]["type"](net.parameters(), **(config["optimizer"]["optim_params"]))
criterion = DPSHLoss(config, bit)
Best_mAP = 0
for epoch in range(config["epoch"]):
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
print("%s[%2d/%2d][%s] bit:%d, dataset:%s, training...." % (
config["info"], epoch + 1, config["epoch"], current_time, bit, config["dataset"]), end="")
net.train()
train_loss = 0
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device)
optimizer.zero_grad()
u = net(image)
loss = criterion(u, label.float(), ind, config)
train_loss += loss.item()
loss.backward()
optimizer.step()
train_loss = train_loss / len(train_loader)
print("\b\b\b\b\b\b\b loss:%.3f" % (train_loss))
if (epoch + 1) % config["test_map"] == 0:
# print("calculating test binary code......")
tst_binary, tst_label = compute_result(test_loader, net, device=device)
# print("calculating dataset binary code.......")\
trn_binary, trn_label = compute_result(dataset_loader, net, device=device)
# print("calculating map.......")
mAP = CalcTopMap(trn_binary.numpy(), tst_binary.numpy(), trn_label.numpy(), tst_label.numpy(),
config["topK"])
if mAP > Best_mAP:
Best_mAP = mAP
if "save_path" in config:
if not os.path.exists(config["save_path"]):
os.makedirs(config["save_path"])
print("save in ", config["save_path"])
np.save(os.path.join(config["save_path"], config["dataset"] + str(mAP) + "-" + "trn_binary.npy"),
trn_binary.numpy())
torch.save(net.state_dict(),
os.path.join(config["save_path"], config["dataset"] + "-" + str(mAP) + "-model.pt"))
print("%s epoch:%d, bit:%d, dataset:%s, MAP:%.3f, Best MAP: %.3f" % (
config["info"], epoch + 1, bit, config["dataset"], mAP, Best_mAP))
print(config)
if __name__ == "__main__":
config = get_config()
print(config)
for bit in config["bit_list"]:
train_val(config, bit)