-
Notifications
You must be signed in to change notification settings - Fork 0
/
DPSH.py
143 lines (109 loc) · 5 KB
/
DPSH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from utils.tools import *
from network import *
import os
import torch
import torch.optim as optim
import time
import numpy as np
torch.multiprocessing.set_sharing_strategy('file_system')
# DPSH(IJCAI2016)
# paper [Feature Learning based Deep Supervised Hashing with Pairwise Labels](https://cs.nju.edu.cn/lwj/paper/IJCAI16_DPSH.pdf)
# code [DPSH-pytorch](https://github.com/jiangqy/DPSH-pytorch)
def get_config():
config = {
"alpha": 0.1,
# "optimizer": {"type": optim.SGD, "optim_params": {"lr": 0.005, "weight_decay": 10 ** -5}},
"optimizer": {"type": optim.RMSprop, "optim_params": {"lr": 1e-5, "weight_decay": 10 ** -5}},
"info": "[DPSH]",
"resize_size": 256,
"crop_size": 224,
"batch_size": 128,
"net": AlexNet,
# "net":ResNet,
# "dataset": "cifar10",
"dataset": "cifar10-1",
# "dataset": "cifar10-2",
# "dataset": "coco",
# "dataset": "mirflickr",
# "dataset": "voc2012",
# "dataset": "imagenet",
# "dataset": "nuswide_21",
# "dataset": "nuswide_21_m",
# "dataset": "nuswide_81_m",
"epoch": 150,
"test_map": 5,
"save_path": "save/DPSH",
# "device":torch.device("cpu"),
"device": torch.device("cuda:1"),
"bit_list": [48],
}
config = config_dataset(config)
return config
class DPSHLoss(torch.nn.Module):
def __init__(self, config, bit):
super(DPSHLoss, self).__init__()
self.U = torch.zeros(config["num_train"], bit).float().to(config["device"])
self.Y = torch.zeros(config["num_train"], config["n_class"]).float().to(config["device"])
def forward(self, u, y, ind, config):
self.U[ind, :] = u.data
self.Y[ind, :] = y.float()
s = (y @ self.Y.t() > 0).float()
inner_product = u @ self.U.t() * 0.5
likelihood_loss = (1 + (-(inner_product.abs())).exp()).log() + inner_product.clamp(min=0) - s * inner_product
likelihood_loss = likelihood_loss.mean()
quantization_loss = config["alpha"] * (u - u.sign()).pow(2).mean()
return likelihood_loss + quantization_loss
def train_val(config, bit):
device = config["device"]
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
config["num_train"] = num_train
net = config["net"](bit).to(device)
optimizer = config["optimizer"]["type"](net.parameters(), **(config["optimizer"]["optim_params"]))
criterion = DPSHLoss(config, bit)
Best_mAP = 0
for epoch in range(config["epoch"]):
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
print("%s[%2d/%2d][%s] bit:%d, dataset:%s, training...." % (
config["info"], epoch + 1, config["epoch"], current_time, bit, config["dataset"]), end="")
net.train()
train_loss = 0
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device)
optimizer.zero_grad()
u = net(image)
loss = criterion(u, label.float(), ind, config)
train_loss += loss.item()
loss.backward()
optimizer.step()
train_loss = train_loss / len(train_loader)
print("\b\b\b\b\b\b\b loss:%.3f" % (train_loss))
if (epoch + 1) % config["test_map"] == 0:
# print("calculating test binary code......")
tst_binary, tst_label = compute_result(test_loader, net, device=device)
# print("calculating dataset binary code.......")\
trn_binary, trn_label = compute_result(dataset_loader, net, device=device)
# print("calculating map.......")
mAP = CalcTopMap(trn_binary.numpy(), tst_binary.numpy(), trn_label.numpy(), tst_label.numpy(),
config["topK"])
if mAP > Best_mAP:
Best_mAP = mAP
if "cifar10-1" == config["dataset"] and epoch > 29:
P, R = pr_curve(trn_binary.numpy(), tst_binary.numpy(), trn_label.numpy(), tst_label.numpy())
print(f'Precision Recall Curve data:\n"DPSH":[{P},{R}],')
if "save_path" in config:
if not os.path.exists(config["save_path"]):
os.makedirs(config["save_path"])
print("save in ", config["save_path"])
np.save(os.path.join(config["save_path"], config["dataset"] + str(mAP) + "-" + "trn_binary.npy"),
trn_binary.numpy())
torch.save(net.state_dict(),
os.path.join(config["save_path"], config["dataset"] + "-" + str(mAP) + "-model.pt"))
print("%s epoch:%d, bit:%d, dataset:%s, MAP:%.3f, Best MAP: %.3f" % (
config["info"], epoch + 1, bit, config["dataset"], mAP, Best_mAP))
print(config)
if __name__ == "__main__":
config = get_config()
print(config)
for bit in config["bit_list"]:
train_val(config, bit)