-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train.py
165 lines (128 loc) · 5.36 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
This python file mainly trains the model based on MNIST and
generates a prediction.txt file of test example images containing
all the predictions from the trained model, then calculates the
accuracy.
"""
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
import tensorflow as tf
import argparse
import os
from sys import argv
from glob import glob
from scipy import misc
import numpy
import ntpath
import skimage.io
import skimage.transform
import skimage.util
from skimage import exposure
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
# 1-->train ...0-->test
train_flag = 1
if (len(argv)>1):
train_flag = 0
if train_flag == 1:
# train part
with tf.Session() as sess:
sess.run(init_op)
for i in range(600000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 0.5})
save_path = saver.save(sess, "./model.ckpt")
print("train model is saved at: %s" % save_path)
else:
# test part
with tf.Session() as sess:
saver.restore(sess, "./model.ckpt")
print("Model restored.")
# pre-processing images, then create prediction.txt based on test result
path = argv[1]
path_list = glob(path + "/*.png")
output = open("prediction.txt", "w")
for img_path in path_list:
# find the image file's name
sps = img_path.split(os.sep)
image_name = sps[-1]
# process image
img = misc.imread(img_path)
img = exposure.adjust_gamma(img, 0.15)
(vertical_pixel, horizontal_pixel) = img.shape
if vertical_pixel > horizontal_pixel:
vertical_padding = int(round(vertical_pixel * 0.15))
horizontal_padding = int(round((vertical_pixel * 1.3 - horizontal_pixel) / 2))
padding = ((vertical_padding, vertical_padding), (horizontal_padding, horizontal_padding))
img = skimage.util.pad(img, padding, 'constant', constant_values=0)
else:
horizontal_padding = int(round(horizontal_pixel * 0.15))
vertical_padding = int(round((horizontal_pixel * 1.3 - vertical_pixel) / 2))
padding = ((vertical_padding, vertical_padding), (horizontal_padding, horizontal_padding))
img = skimage.util.pad(img, padding, 'constant', constant_values=0)
img = skimage.transform.resize(img, (28, 28))
img = numpy.reshape(img, (1, 784))
results = tf.argmax(y_conv, 1)
num = results.eval(feed_dict = {x: img , keep_prob: 1.0})
output.write("%s\t%i\n" % (image_name, num[0]))
output.close()
# calculate accuracy
map = {}
total = 0
right = 0
# read annotation.txt file
with open("./annotation.txt", "r") as ann:
for ln in ann:
image, label = ln.split()
map[image] = label
# read prediction.txt file
with open("./prediction.txt", "r") as pred:
for ln in pred:
image, label = ln.split()
total += 1
if label == map[image]:
right += 1
result = right / total
print("%.4f" % result)