-
Notifications
You must be signed in to change notification settings - Fork 0
/
Revue.bib
394 lines (337 loc) · 10.1 KB
/
Revue.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# SVM ------------------------------------------------------------------------------
@article{platt1998sequential,
title={Sequential minimal optimization: A fast algorithm for training support vector machines},
author={Platt, J.},
year={1998}
}
@article{hofmann2006support,
title={Support vector machines—Kernels and the kernel trick},
author={Hofmann, M.},
journal={Notes},
volume={26},
year={2006}
}
@article{cortes1995support,
title={Support-vector networks},
author={Cortes, C. and Vapnik, V.},
journal={Machine learning},
volume={20},
number={3},
pages={273--297},
year={1995},
publisher={Springer}
}
@inproceedings{boser1992training,
title={A training algorithm for optimal margin classifiers},
author={Boser, B. and Guyon, I. and Vapnik, V.},
booktitle={Proceedings of the fifth annual workshop on Computational learning theory},
pages={144--152},
year={1992},
organization={ACM}
}
@article{scholkopf2000new,
title={New support vector algorithms},
author={Sch{\"o}lkopf, B. and Smola, A. and Williamson, R. and Bartlett, P.},
journal={Neural computation},
volume={12},
number={5},
pages={1207--1245},
year={2000},
publisher={MIT Press}
}
@article{tipping2001sparse,
title={Sparse Bayesian learning and the relevance vector machine},
author={Tipping, M.},
journal={Journal of machine learning research},
volume={1},
number={Jun},
pages={211--244},
year={2001}
}
@inproceedings{tong2000restricted,
title={Restricted bayes optimal classifiers},
author={Tong, S. and Koller, D.},
booktitle={AAAI/IAAI},
pages={658--664},
year={2000}
}
@article{chang2001training,
title={Training v-support vector classifiers: theory and algorithms},
author={Chang, CC. and Lin, CJ.},
journal={Neural computation},
volume={13},
number={9},
pages={2119--2147},
year={2001},
publisher={MIT Press}
}
@article{rifkin2004defense,
title={In defense of one-vs-all classification},
author={Rifkin, R. and Klautau, A.},
journal={Journal of machine learning research},
volume={5},
number={Jan},
pages={101--141},
year={2004}
}
@misc{Hsuan-tien,
author={Hsuan-Tien, L.},
title={Lecture 1: Linear Support Vector Machine},
year={2018},
publisher={National Taiwan University}
}
# RTF ------------------------------------------------------------------------------
@article{breiman2001random,
title={Random forests},
author={Breiman, L.},
journal={Machine learning},
volume={45},
number={1},
pages={5--32},
year={2001},
publisher={Springer}
}
@article{breiman1996bagging,
title={Bagging predictors},
author={Breiman, L.},
journal={Machine learning},
volume={24},
number={2},
pages={123--140},
year={1996},
publisher={Springer}
}
@misc{hastiefriedman,
title={\& Friedman, J.(2008). The Elements of Statistical Learning; Data Mining, Inference and Prediction},
author={Hastie, T. and Tibshirani, R. and Friedman, J.},
publisher={Springer, New York}
}
@misc{breiman1996out,
title={Out-of-bag estimation},
author={Breiman, L.},
year={1996},
publisher={Citeseer}
}
# ANN ------------------------------------------------------------------------------
@book{ Bishop,
author = {Bishop, C.},
title = {Pattern recognition and machine learning},
publisher ={Springer},
year = {2006} }
@article{ruder2016overview,
title={An overview of gradient descent optimization algorithms},
author={Ruder, S.},
journal={arXiv preprint arXiv:1609.04747},
year={2016}
}
@article{stathakis2009many,
title={How many hidden layers and nodes?},
author={Stathakis, D.},
journal={International Journal of Remote Sensing},
volume={30},
number={8},
pages={2133--2147},
year={2009},
publisher={Taylor \& Francis}
}
@incollection{lecun2012efficient,
title={Efficient backprop},
author={LeCun, Y. and Bottou, L. and Orr, G. and M{\"u}ller, KR.},
booktitle={Neural networks: Tricks of the trade},
pages={9--48},
year={2012},
publisher={Springer}
}
@inproceedings{glorot2011deep,
title={Deep sparse rectifier neural networks},
author={Glorot, X. and Bordes, A. and Bengio, Y.},
booktitle={Proceedings of the fourteenth international conference on artificial intelligence and statistics},
pages={315--323},
year={2011}
}
@article{srivastava2014dropout,
title={Dropout: a simple way to prevent neural networks from overfitting},
author={Srivastava, N. and Hinton, G. and Krizhevsky, A. and Sutskever, I. and Salakhutdinov, R.},
journal={The Journal of Machine Learning Research},
volume={15},
number={1},
pages={1929--1958},
year={2014},
publisher={JMLR. org}
}
@article{huang2003learning,
title={Learning capability and storage capacity of two-hidden-layer feedforward networks},
author={Huang, G.},
journal={IEEE Transactions on Neural Networks},
volume={14},
number={2},
pages={274--281},
year={2003},
publisher={IEEE}
}
# Previous work -----------------------------------------------------------------
@article{friedman1937use,
title={The use of ranks to avoid the assumption of normality implicit in the analysis of variance},
author={Friedman, M.},
journal={Journal of the american statistical association},
volume={32},
number={200},
pages={675--701},
year={1937},
publisher={Taylor \& Francis}
}
@article{lessmann2015benchmarking,
title={Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research},
author={Lessmann, S. and Baesens, B. and Seow, H. and Thomas, L.},
journal={European Journal of Operational Research},
volume={247},
number={1},
pages={124--136},
year={2015},
publisher={Elsevier}
}
@article{gondara2016classifier,
title={Classifier comparison using precision},
author={Gondara, L.},
journal={arXiv preprint arXiv:1609.09471},
year={2016}
}
@article{liu2003handwritten,
title={Handwritten digit recognition: benchmarking of state-of-the-art techniques},
author={Liu, C. and Nakashima, K. and Sako, H. and Fujisawa, H.},
journal={Pattern recognition},
volume={36},
number={10},
pages={2271--2285},
year={2003},
publisher={Elsevier}
}
@article{demvsar2006statistical,
title={Statistical comparisons of classifiers over multiple data sets},
author={Dem{\v{s}}ar, J.},
journal={Journal of Machine learning research},
volume={7},
number={Jan},
pages={1--30},
year={2006}
}
@article{dietterich1998approximate,
title={Approximate statistical tests for comparing supervised classification learning algorithms},
author={Dietterich, T.},
journal={Neural computation},
volume={10},
number={7},
pages={1895--1923},
year={1998},
publisher={MIT Press}
}
@article{garcia2010advanced,
title={Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power},
author={Garc{\'\i}a, S. and Fern{\'a}ndez, A. and Luengo, J. and Herrera, F.},
journal={Information Sciences},
volume={180},
number={10},
pages={2044--2064},
year={2010},
publisher={Elsevier}
}
@incollection{wolpert2002supervised,
title={The supervised learning no-free-lunch theorems},
author={Wolpert, D.},
booktitle={Soft computing and industry},
pages={25--42},
year={2002},
publisher={Springer}
}
@article{masters2018revisiting,
title={Revisiting Small Batch Training for Deep Neural Networks},
author={Masters, D. and Luschi, C.},
journal={arXiv preprint arXiv:1804.07612},
year={2018}
}
@inproceedings{klambauer2017self,
title={Self-normalizing neural networks},
author={Klambauer, G. and Unterthiner, T. and Mayr, A. and Hochreiter, S.},
booktitle={Advances in Neural Information Processing Systems},
pages={971--980},
year={2017}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, D. and Ba, J.},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
# Others -----------------------------------------------------------------------
@article{cheng2018polynomial,
title={Polynomial Regression As an Alternative to Neural Nets},
author={Cheng, X. and Khomtchouk, B. and Matloff, N. and Mohanty, P.},
journal={arXiv preprint arXiv:1806.06850},
year={2018}
}
@unpublished{charpentier:hal-01568851,
title = {{{\'E}conom{\'e}trie \& Machine Learning}},
author = {Charpentier, A. and Flachaire, E. and Ly, A.},
url = {https://hal.archives-ouvertes.fr/hal-01568851},
note = {working paper or preprint},
year = {2017},
month = {Jul},
HAL_ID = {hal-01568851},
HAL_VERSION = {v1}
}
@misc{john2014big,
title={Big data: A revolution that will transform how we live, work, and think},
author={John Walker, S.},
year={2014},
publisher={Taylor \& Francis}
}
@book{silver2012signal,
title={The signal and the noise: why so many predictions fail--but some don't},
author={Silver, N.},
year={2012},
publisher={Penguin}
}
@book{kuhn2013applied,
title={Applied predictive modeling},
author={Kuhn, M. and Johnson, K.},
volume={26},
year={2013},
publisher={Springer}
}
@misc{Dua:2017 ,
author = "Dheeru, D. and Karra Taniskidou, E.",
year = "2017",
title = "{UCI} Machine Learning Repository",
url = "http://archive.ics.uci.edu/ml",
institution = "University of California, Irvine, School of Information and Computer Sciences" }
@article{powers2011evaluation,
title={Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation},
author={Powers, D.},
year={2011},
publisher={Bioinfo Publications}
}
@incollection{ling2011class,
title={Class imbalance problem},
author={Ling, C. and Sheng, V.},
booktitle={Encyclopedia of machine learning},
pages={171--171},
year={2011},
publisher={Springer}
}
@inproceedings{ozgur2005text,
title={Text categorization with class-based and corpus-based keyword selection},
author={{\"O}zg{\"u}r, A. and {\"O}zg{\"u}r, L. and G{\"u}ng{\"o}r, T.},
booktitle={International Symposium on Computer and Information Sciences},
pages={606--615},
year={2005},
organization={Springer}
}
@article{zhang2004optimality,
title={The optimality of naive Bayes},
author={Zhang, H.},
journal={AA},
volume={1},
number={2},
pages={3},
year={2004}
}