-
Notifications
You must be signed in to change notification settings - Fork 1
/
logger.py
93 lines (77 loc) · 2.97 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
import numpy as np
import scipy.misc
from io import BytesIO
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
import torchvision
import torch
import torchvision.transforms as transforms
class Logger(object):
def __init__(self, log_dir):
"""Create a summary writer logging to log_dir."""
self.writer = SummaryWriter(log_dir)
def scalar_summary(self, tag, value, step):
"""Log a scalar variable."""
self.writer.add_scalar(tag, value, step)
self.writer.flush()
def image_summary(self, tag, images, step):
"""Log a list of images."""
for x in images:
# print(x.shape)
# b = torch.from_numpy(x)
# torchvision.utils.make_grid(b)
self.writer.add_image(tag, x, step)
self.writer.flush()
# img_summaries = []
# for i, img in enumerate(images):
# Write the image to a string
# try:
# s = StringIO()
# except:
# s = BytesIO()
# scipy.misc.toimage(img).save(s, format="png")
# img = Image.fromarray(np.uint16(img), mode='L')
# img.save(s, format("png"))
# print(img.shape)
# Image.fromarray((img[:, :, 0] * 255).astype('uint8'), mode='L').convert('RGB').save(s, format="png")
# Create an Image object
# img_sum = tf.summary.image(encoded_image_string=s.getvalue(),
# height=img.shape[0],
# width=img.shape[1])
# Create a Summary value
# img_summaries.append(tf.summary.value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
# summary = tf.summary(value=img_summaries)
# self.writer.add_summary(summary, step)
# img_grid = torchvision.utils.make_grid(images)
# self.writer.add_image(tag, images, step)
# self.writer.flush()
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
# counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
'''
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.summary(value=[tf.summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
'''
print(values.shape)
tf.summary.histogram(name=tag, data=values, step=step)
self.writer.flush()
def close_summary(self):
self.writer.close()