diff --git a/src/cosmic_pi_network/main.py b/src/cosmic_pi_network/main.py index 3802bad..82dd28f 100644 --- a/src/cosmic_pi_network/main.py +++ b/src/cosmic_pi_network/main.py @@ -3,6 +3,10 @@ from cosmic_pi_network.data_preprocessing import DataPreprocessing from cosmic_pi_network.neural_network import NeuralNetwork from cosmic_pi_network.nlp import NLP +from cosmic_pi_network.quantum_computing import QuantumCircuit +from cosmic_pi_network.artificial_intelligence import AIAgent +from cosmic_pi_network.cryptography import Crypto +from cosmic_pi_network.machine_learning import ReinforcementLearning def main(): api = API() @@ -23,7 +27,7 @@ def main(): thresh_image = computer_vision.apply_threshold(grayscale_image) edges_image = computer_vision.detect_edges(grayscale_image) faces = computer_vision.detect_faces(grayscale_image) - print("Number offaces detected:", len(faces)) + print("Number of faces detected:", len(faces)) data_preprocessing = DataPreprocessing() data = data_preprocessing.load_data("data.csv") @@ -36,5 +40,36 @@ def main(): loss, accuracy = neural_network.evaluate_model(model, X_test_scaled, y_test) print("Loss:", loss, "Accuracy:", accuracy) + quantum_circuit = QuantumCircuit() + qubits = quantum_circuit.create_qubit(2) + gates = [cirq.H(qubits[0]), cirq.CNOT(qubits[0], qubits[1])] + circuit = quantum_circuit.create_circuit(qubits, gates) + result = quantum_circuit.simulate_circuit(circuit) + print("Result:", result) + + ai_agent = AIAgent() + X = np.array([[1, 2], [3, 4], [5, 6]]) + y = np.array([0, 0, 1]) + clf = ai_agent.create_decision_tree(X, y) + prediction = ai_agent.make_prediction(clf, X) + print("Prediction:", prediction) + accuracy = ai_agent.evaluate_model(clf, X, y) + print("Accuracy:", accuracy) + + crypto = Crypto() + key = crypto.generate_key_pair() + data = b"Hello, World!" + encrypted_data = crypto.encrypt_data(key, data) + print("Encrypted data:", encrypted_data) + decrypted_data = crypto.decrypt_data(key, encrypted_data) + print("Decrypted data:", decrypted_data) + + reinforcement_learning = ReinforcementLearning() + env = reinforcement_learning.create_environment("CartPole-v1") + model = reinforcement_learning.create_agent(env) + model = reinforcement_learning.train_agent(model, env) + rewards = reinforcement_learning.evaluate_agent(model, env) + print("Rewards:", rewards) + if __name__ == "__main__": main()