This repository features Python implementations of a wide range of machine learning models that I explored during the Machine Learning A-Z course. The models cover Regression, Classification, Clustering, Reinforcement Learning, Association Rule Learning, Natural Language Processing (NLP), as well as Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN)
Machine Learning A-Z/
├── Model Selection/
│ ├── Classification
│ └── Regression
├── Part 1 - Data Preprocessing
├── Part 2 - Regression/
│ ├── Section 4 - Simple Linear Regression
│ ├── Section 5 - Multiple Linear Regression
│ ├── Section 6 - Polynomial Regression
│ ├── Section 7 - Support Vector Regression (SVR)
│ ├── Section 8 - Decision Tree Regression
│ └── Section 9 - Random Forest Regression
├── Part 3 - Classification/
│ ├── Section 14 - Logistic Regression
│ ├── Section 15 - K-Nearest Neighbors (K-NN)
│ ├── Section 16 - Support Vector Machine (SVM)
│ ├── Section 17 - Kernel SVM
│ ├── Section 18 - Naive Byes
│ ├── Section 19 - Decision Tree Classification
│ └── Section 20 - Random Forest Classification
├── Part 4 - Clustering/
│ ├── Section 24 - K-Means Clustering
│ └── Section 25 - Heirarchical Clustering
├── Part 5 - Association Rule Learning/
│ ├── Section 28 - Apriori
│ └── Section 29 - Eclat
├── Part 6 - Reinforcement Learning/
│ ├── Section 32 - Upper Confidence Bound (UCB)
│ └── Section 33 - Thompson Sampling
├── Part 7 - Natural Language Processing
├── Part 8 - Deep Learning/
│ ├── Section 39 - Artificial Neural Network (ANN)
│ └── Section 40 - Convolutional Neural Network (CNN)
├── Part 9 - Dimensionality Reduction/
│ ├── Section 43 - Principal Component Analysis (PCA)
│ ├── Section 44 - Linear Discriminant Analysis (LDA)
│ └── Section 45 - Kernel PCA
└── Part 10 - Model Selection and Boosting/
├── Section 48 - Model Selection
├── Section 49 - XGBoost
└── Section 50 - CatBoost