
The original multi-hop proxy re-encryption algorithm
Jon Lamar and Bob Wall

March 7, 2018

1 Initial algorithm

The foundation of the IronCore Labs proxy-reencryption system is an algorithm that was first
published by Wang and Cao in [WC09]. Here we present it in our notation.

1.1 Parameters

Let params = (k, p,G1,GT , e,g,g1,h1,h2,h3, H1,H2, Sig) be public parameters, where:

• k is the number of bits required to store keys;

• p is a prime;

• G1 and GT are abelian groups with G1 written additively and GT written multiplicatively;1

• e : G1 ×G1 → GT is a bilinear pairing;

• g is an arbitrary fixed nonzero point in G1.

• g1, h1, h2, and h3 are random elements of G1 which do not lie in the cyclic subgroup
generated by g.

• H1 : {0, 1}∗ → Fp and H2 : GT → G1 are two one-way collision-resistant hash functions.

• Sig = (G,S,V) is a strongly unforgeable signature scheme.

1.2 The scheme

The scheme consists of five algorithms: KeyGen, Enc, ReKeyGen, ReEnc, and Dec.

• KeyGen(params)→ (pk, sk): Generate a public/private key pair.

1. Let the secret key, sk be chosen randomly from Z∗p.

2. The public key is
pk← sk · g

• Enc(params,pkj ,m)→ C(1): Encrypt a message m ∈ GT to user j, given j’s public key pkj .

1. Let the ephemeral secret key, esk, be chosen randomly from Z∗p
1Throughout, we will use bold to denote elements of G1.

1

2. The ephemeral public key is
epk← esk · g

3. The encrypted message is
em← m · e(pkj ,g1)esk

4. The encryption authentication code is

eac← esk · (H1(epk) · h1 + H1(epk‖em) · h2 + h3)

5. The ciphertext is
C(1) ← (epk, em, eac)

The superscript 1 indicates that C(1) is a first-level ciphertext.

• ReKeyGen(params, ski,pkj , Pi)→ rki→j : Generate a re-encryption key from user i (the dele-
gator) to user j (the delegatee), given a proxy Pi associated to user i. The proxy will perform
the actual re-encryption of ciphertexts encrypted to user i after that user has delegated de-
cryption to user j.

1. Let the re-encryption secret key, rsk, be chosen randomly from Z∗p
2. Let the temporary key K be chosen randomly from GT

3. The re-encryption public key is
rpk← rsk · g

4. The encrypted temporary key is

rek ← K · e(pkj ,g1)rsk

5. The re-encryption authentication code is

rac← rsk · (H1(rpk) · h1 + H1(rpk‖rek‖svkPi) · h2 + h3)

6. The re-encryption point is

rep← H2(K) + (−ski) · g1

7. The re-encryption key is

rki→j ← (rpk, rek, svkPi , rac, rep)

8. The re-encryption key is sent to the proxy Pi via a secure channel

• ReEnc(params, sskPi , rki→j , C
(l))→ C(l+1): Re-encrypt a level-l ciphertext encrypted to user

i into a level-(l + 1) ciphertext encrypted to user j. Additional information is appended to
the new ciphertext. Operation is performed by user i’s proxy, Pi, which must have its secret
signing key sskPi available.

To re-encrypt a first-level ciphertext C(1):

2

1. If any parse or verify step fails, return ⊥

2. Parse C(1) into (epk, em, eac)

3. Parse rki→j into (rpk, rek, svk, rac, rep)

4. Validate the authentication code of the encrypted message, by verifying that

e(g, eac) = e(epk, H1(epk) · h1 + H1(epk‖em) · h2 + h3)

5. Validate the authentication code for the re-encryption key, by verifying that

e(g, rac) = e(rpk, H1(rpk) · h1 + H1(rpk‖rek‖svk) · h2 + h3)

6. The re-encrypted message is

em′ ← em · e(epk, rep)

7. The altered ciphertext is
C ′ ← (epk, em′, eac)

8. The proxy signature is

S(2) ← S(sskPi , (C
′, rpk, svkPi , rac))

9. The re-encryption block is

RB(2) ← (rpk, rek, svkPi , rac, S
(2))

10. The final level-2 ciphertext is
C(2) ← (C ′, RB(2))

Note that the signature does not include rek, and that the ciphertext includes all of the pieces
of the re-encryption key except rep.

To re-encrypt a level-l ciphertext C(l), where l > 1:

1. If any parse or verify step fails, return ⊥

2. Parse C(l) into (C ′, RB(2), . . . , RB(l))

3. For each integer k ∈ [2, l], parse RB(k) into (rpk(k), rek(k), svk(k), rac(k), S(k))

4. Parse rki→j into (rpk(l+1), rek(l+1), svk(l+1), rac(l+1), rep(l+1))

5. Validate the authentication code of the last re-encryption block by verifying that

e(g, rac(l)) = e(rpk(l), H1(rpk
(l)) · h1 + H1(rpk

(l)‖rek‖svkPil−1
) · h2 + h3)

6. Validate the authentication code of the new re-encryption key by verifying that

e(g, rac(l+1)) = e(rpk(l+1), H1(rpk
(l+1)) · h1 + H1(rpk

(l+1)‖rek‖svk(l+1)) · h2 + h3)

3

7. Validate the signature of the first re-encryption block

V(svk(2), S(2), (C ′, rpk(2), svk(2), rac(2))) = 1

8. Validate the signature of each subsequent re-encryption block; for each integer k ∈ [3, l],
verify

V(svk(k), S(k), (C ′, RB′(2), . . . , RB′(k−1), rpk(k), svk(k), rac(k))) = 1

9. The re-encrypted temporary key is

rek′(l) ← rek(l) · e(rpk(l), rep(l+1))

10. The altered re-encryption block is

RB′(l) ← (rpk(l), rek′(l), svk(l), rac(l), S(l))

11. Create a new proxy signature for the present level of re-encryption by computing

S(l+1) ← S(sskPi , (C
′, RB′(2), . . . , RB′(l), rpk(l+1), svkPi , rac

(l+1)))

12. Create a level-(l + 1) re-encryption block,

RB(l+1) ← (rpk(l+1), rek(l+1), svkPi , rac
(l+1), S(l+1))

13. The final level-(l + 1) ciphertext is

C(l+1) ← (C ′, RB′(2), . . . , RB′(l), RB(l+1))

In summary, on each round of re-encryption (after the first), the last rek value from the
previous round of re-encryption is re-encrypted, then the first four pieces of the new re-
encryption key as well as the new signature are appended. Note that the encrypted message
em from the original ciphertext C(1) is only re-encrypted once, at level 2. After that, it is
not changed again.

• Dec(params, ski, C
(l)) → m: Decrypt a ciphertext encrypted to user i. As above, we return

⊥ if any parse or verify step fails.

To decrypt a first-level ciphertext C(1):

1. Parse C(1) into (epk, em, eac)

2. Validate the authentication code of the ciphertext by verifying that

e(g, eac) = e(epk, H1(epk) · h1 + H1(epk‖em) · h2 + h3)

3. Finally, recover the plaintext m via the operation

m← em · e(epk, (−ski) · g1)

To decrypt a level-l ciphertext C(l):

4

1. Parse C(l) into (C ′, RB′(2), . . . , RB′(l−1), RB(l))

2. Parse C ′ into (epk, em′, eac)

3. Parse RB(l) into (rpk(l), rek(l), svkPil
, rac(l), S(l))

4. For each integer k in [2, l − 1], parse RB′(k) into (rpk(k), rek′(k), svk(k), rac(k), S(k))

5. Validate the last re-encryption block (to confirm that the last encrypted temporary key
is not modified) by verifying

e(g, rac(l)) = e(rpk(l), H1(rpk
(l)) · h1 + H1(rpk

(l)‖rek(l)‖svk(l)) · h2 + h3)

6. For each integer k ∈ [2, l], validate the signature of each re-encryption block by verifying
that

V(svk(k), S(k), (C ′, RB′(2), . . . , RB′(k−1), rpk(k), svk(k), rac(k))) = 1

7. Recover the (l − 1)-st temporary key Kl−1 via the operation

Kl−1 ← rek(l) · e(rpk(l), (−ski) · g1)

8. For each integer k from l − 2 down to 1, recover the k-th temporary key Kk via the
operation

Kk ← rek(k+1) · e(rpk(k+1),−H2(Kk+1))

9. Finally, recover the plaintext m via the operation

m← em′ · e(epk,−H2(K1))

1.3 Example

In the following example, assume users Alice, Bob, Carol, and Dave. Values are subscripted using
their initials; for example, pkA is Alice’s public key, skD is Dave’s secret key, etc. Assume that the
same proxy, PZ , is shared by all users.

For this example, suppose a user Zed encrypts a message mA to Alice, creating the ciphertext CA,
which is composed of (epkA, emA, eacA). When Alice receives CA, she performs these decryption
steps:

1. Parse CA into (epkA, emA, eacA)

2. Compute

e(g, eacA) = e(g, H1(epkA) · h1 + H1(epkA‖emA) · h2 + h3)eskA

3. Compute
e(epkA, H1(epkA) · h1 + H1(epkA‖emA) · h2 + h3) =

e(eskA · g, H1(epkA) · h1 + H1(epkA‖emA) · h2 + h3)

5

Since the pairing e is bilinear, the exponent eskA can be moved inside the pairing and multiplied
by either term, so the two values should be equivalent if CA has not been corrupted.

Now, the encrypted message was generated by

m · e(pkA,g1)eskA =

m · e(skA · g,g1)eskA =

m · e(eskA · g, skA · g1)

While decrypting, Alice computes

em/e(epkA, skA · g1) =

em/e(eskA · g, skA · g1) =

m · e(eskA · g, skA · g1)/e(eskA · g, skA · g1) =

m

Now, suppose that instead of decrypting CA, Alice delegates her decryption to Bob. She creates a
re-encryption key rkA→B, which is composed of

(rpkAB, rekAB, svkPZ
, racAB, repAB)

and sends this to PZ , along with the ciphertext CA. PZ re-encrypts the message, generating the
new ciphertext C ′B, which is composed of

(epkA, em
′
B, eacA, RBAB)

where em′B is
emA · e(epkA, repAB)

and RBAB is
(rpkAB, rekAB, svkPZ

, racAB, SAB)

When Bob receives C ′B, he performs these steps:

1. Parse C ′B into (C ′, RBAB)

2. Compute

e(g, racAB) = e(g, rskAB · (H1(rpkAB) · h1 + H1(rpkAB‖rekAB‖svkPZ
) · h2 + h3)

3. Compute

e(rpkAB, H1(rpkAB) · h1 + H1(rpkAB‖rekAB‖svkPZ
) · h2 + h3) =

e(rskAB · g, H1(rpkAB) · h1 + H1(rpkAB‖rekAB‖svkPZ
) · h2 + h3)

Again, by the properties of bilinearity, these two should be equivalent in the absence of message
corruption. Continuing,

Compute V(svkPZ
, SAB, (C

′, rpkAB, svkPZ
, racAB)) =

V(svkPZ
,S(sskPZ

, (C ′, rpkAB, svkPZ
, racAB)), (C ′, rpkAB, svkPZ

, racAB))

The verification algorithm should return 1 in the absence of data corruption.

Continuing:

6

1. Compute
K ′AB = rekAB/e(rpkAB, skB · g1) =

KAB · e(pkB,g1)rskAB/e(rskAB · g, skB · g1) =

KAB · e(skB · g, rskAB · g1)/e(rskAB · g, skB · g1) =

KAB · e(rskAB · g, skB · g1)/e(rskAB · g, skB · g1) =

KAB

2. Compute
em′/e(epkA,H2(K ′AB)) =

m · e(pkA,g1)eskA · e(epkA, repAB)/e(eskA · g,H2(KAB)) =

m · e(skA · g, eskA · g1) · e(eskA · g,H2(KAB) + (−skA) · g1)/e(eskA · g,H2(KAB)) =

m · e(eskA · g, skA · g1) · e(eskA · g,H2(KAB) + (−skA) · g1)/e(eskA · g,H2(KAB)) =

m · e(eskA · g, skA · g1 + H2(KAB) + (−skA) · g1)/e(eskA · g,H2(KAB)) =

m · e(eskA · g,H2(KAB))/e(eskA · g,H2(KAB)) =

m

Now, suppose Bob delegates his decryption to Carol. He computes the re-encryption key rkB→C :

1. Let rskBC be chosen randomly from Z∗p
2. Let KBC be chosen randomly from GT

3. rpkBC ← rskBC · g

4. rekBC ← KBC · e(pkC ,g1)rskBC

5. racBC ← (H1(rpkBC) · h1 + H1(rpkBC‖rekBC‖svkPZ
) · h2 + h3)rskBC

6. repBC ← H2(KBC) + skB · g1

7. rkB→C ← (rpkBC , rekBC , svkPZ
, racBC , repBC)

and shares that and C ′B with PZ . The proxy re-encrypts it, generating the new ciphertext C ′C ,
using the following steps:

1. Parse C ′B into (C ′, rpkAB, rekAB, svkPz , racAB, SAB)

2. rek′AB ← rekAB · e(rpkAB, repBC)

3. RB′AB ← (rpkAB, rek
′
AB, svkPz , racAB, SAB)

4. SBC ← S(sskPz , (C
′
B, RB′AB, rpkBC , svkPz , racBC))

5. RBBC ← (rpkBC , rekBC , svkPz , racBC , SBC)

6. C ′C ← (C ′, RB′A, RBBC)

When Carol decrypts C ′C , she follows these steps:

1. Parse C ′C into (C ′, RB′AB, RBBC)

7

2. Compute
e(g, racBC) =

e(g, rskBC · (H1(rpkBC) · h1 + H1(rpkBC‖rekBC‖svkPZ
) · h2 + h3))

3. Compute

e(rpkBC , H1(rpkBC) · h1 + H1(rpkBC‖rekBC‖svkPZ
) · h2 + h3) =

e(rskBC · g, H1(rpkBC) · h1 + H1(rpkBC‖rekBC‖svkPZ
) · h2 + h3)

Again, by the properties of bilinearity, these two should be equivalent in the absence of message
corruption. Continuing,

1. Compute
V(svkPZ

, SAB, (C
′, rpkAB, svkPZ

, racAB)) =

V(svkPZ
,S(sskPZ

, (C ′, rpkAB, svkPZ
, racAB)), (C ′, rpkAB, svkPZ

, racAB))

2. Repeat for RBBC

The verification algorithm should return 1 for both cases in the absence of data corruption.

Continuing:

1. Compute
K ′BC = rekBC/e(rpkBC ,g1

skC) =

KBC · e(pkC ,g1)rskBC/e(grskBC ,g1
skC) =

KBC · e(g,g1skC)rskBC/e(grskBC ,g1
skC) =

KBC · e(grskBC ,g1
skC)/e(grskBC ,g1

skC) =

KBC

2. Compute
K ′AB = rek′AB/e(rpkAB,H2(KBC)) =

rekAB · e(rpkAB, repBC)/e(rpkAB,H2(KBC)) =

KAB · e(pkB,g1)rskAB · e(rpkAB,H2(KBC) +−skB · g1)/e(rskAB · g,H2(KBC)) =

KAB · e(g, skB · g1)rskAB · e(rskAB · g,H2(KBC) +−skB · g1)/e(rskAB · g,H2(KBC)) =

KAB · e(rskAB · g, skB · g1) · e(rskAB · g,H2(KBC) +−skB · g1)/e(rskAB · g,H2(KBC)) =

KAB · e(rskAB · g, skB · g1 + H2(KBC) +−skB · g1)/e(rskAB · g,H2(KBC)) =

KAB · e(rskAB · g,H2(KBC))/e(rskAB · g,H2(KBC)) =

KAB

Then actually decrypt the message:

8

1. Compute
em′/e(epkA,H2(K ′AB)) =

m · e(pkA,g1)eskA · e(epkA, repAB)/e(eskA · g,H2(KAB)) =

m · e(skA · g,g1)eskA · e(eskA · g,H2(KAB) +−skA · g1)/e(eskA · g,H2(KAB)) =

m · e(eskA · g, skA · g1) · e(eskA · g,H2(KAB) +−skA · g1)/e(eskA · g,H2(KAB)) =

m · e(eskA · g, skA · g1 + H2(KAB) +−skA · g1)/e(eskA · g,H2(KAB)) =

m · e(eskA · g,H2(KAB))/e(eskA · g,H2(KAB)) =

m

2 Simplifying and enhancing authentication

The algorithms as proposed were designed to support multiple proxies, and to allow for the reen-
cryptions of the message to be done in separate steps, with intermediate results potentially stored
for periods of time. In the IronCore environment, there is only a single proxy, and the reencryption
hops are always all applied at the same time. Because of this, we made a simplification of the
algorithm to replace the authentication codes, which required a relatively high-overhead pairing
computation, with an authentication hash combined with a single signature, computed over the
entire encrypted or re-encrypted message. Both approach support the same authenticated encryp-
tion capability, but our solution adds significantly less time to the computation of the encrypted
message and the reencrypted message, and adds less to the size of the encrypted message.

2.1 Parameters

Let params = (k, p,G1,GT , e,g,g1,SHA256,H2, Sig) be public parameters, where:

• k is the number of bits required to store keys;

• p is a prime;

• G1 and GT are abelian groups with G1 written additively and GT written multiplicatively;2

• e : G1 ×G1 → GT is a bilinear pairing;

• g is an arbitrary fixed nonzero point in G1.

• g1 is a random element of G1 which does not lie in the cyclic subgroup generated by g.

• SHA256 : {0, 1}∗ → 256-bit hash and H2 : GT → G1 are two one-way collision-resistant hash
functions.

• Sig = (G,S,V) is the Ed25519 strongly unforgeable signature scheme, with a key generation
algorithm, a signing algorithm, and a verification algorithm.

2Throughout, we will use bold to denote elements of G1.

9

2.2 The scheme

The scheme consists of five algorithms: KeyGen, Enc, ReKeyGen, ReEnc, and Dec.

• KeyGen(params)→ (pk, sk, psk, ssk): Generate a public/private key pair and a public/private
signing key pair.

1. Let the secret key, sk be chosen randomly from Z∗p.

2. The public key is
pk← sk · g

3. The signing key pair is
(psk, ssk)← G

• Enc(params,pkj , pski, sski,m)→ C: Encrypt a message m ∈ GT to user j, given j’s public
key pkj and i’s signing key pair (pski, sski).

1. Let the ephemeral secret key, esk, be chosen randomly from Z∗p
2. The ephemeral public key is

epk← esk · g

3. The encrypted message is
em← m · e(pkj ,g1)esk

4. The authentication hash is
ah← SHA256(epk||m)

5. The signature is
sig ← S(epk||em||ah||pski, sski)

6. The ciphertext is
C ← (epk, em, ah, pski, sig)

• ReKeyGen(params, ski,pkj , pski, sski) → rki→j : Generate a re-encryption key from user i
(the delegator) to user j (the delegatee).

1. Let the re-encryption secret key, rsk, be chosen randomly from Z∗p
2. Let the temporary key K be chosen randomly from GT

3. The re-encryption public key is
rpk← rsk · g

4. The encrypted temporary key is

rek ← K · e(pkj ,g1)rsk

5. The re-encryption point is

rep← H2(K) + (−ski) · g1

10

6. The signature is
sig ← S(rpk||rek||rep||pski, sski)

7. The re-encryption key is

rki→j ← (rpk, rek, rep, pski, sig)

8. The re-encryption key is sent to the proxy via a secure channel

• ReEnc(params, rki→z, C) → RC – or – ReEnc(params, rki→a, [...rky→z], C) → RC: Re-
encrypt a ciphertext C encrypted to user i into a ciphertext encrypted to user z. There
must be at least one re-encryption key, but there can be a chain of multiple keys. The from
user of the first re-encryption key must be i, and the to user of the last re-encryption key
must be z. The chain must match the to user of each re-encryption key with the from user
of the succeeding re-encryption key to form the chain. An additional re-encryption block is
appended to the new ciphertext for each re-encryption. This operation is performed by the
proxy, which must have its own signing key pair (pskproxy, sskproxy) available.

For the first re-encryption key in the chain, re-encrypt C as follows:

1. If any parse or verify step fails, return ⊥

2. Parse C into (epk, em, ah, pskm, sigm)

3. Parse rki→z into (rpk, rek, rep, pski, sigrk)

4. Validate the signature of the encrypted message, by verifying that

V(epk||em||ah||pskm, pskm, sigm) = true

5. Validate the signature for the re-encryption key, by verifying that

V(rpk||rek||rep||pski, pski, sigrk) = true

6. The re-encrypted message is

em′ ← em · e(epk, rep)

7. The altered ciphertext is
C ′ ← (epk, em′, ah)

8. The re-encryption block is
RB ← (rpk, rek)

9. The re-encrypted ciphertext RC ′, which is not complete, is

RC ′ ← (C ′, RB)

For each subsequent re-encryption key in the chain, rka→b, perform the following:

1. Parse the last re-encryption block of RC ′ into (rpklast, reklast)

11

2. Parse rka→b into (rpk, rek, rep, pska, sigrk)

3. Validate the signature for the re-encryption key, by verifying that

V(rpk||rek||rep||pska, pska, sigrk) = true

4. Replace reklast in the last re-encryption block with

rek′last ← reklast · e(rpklast, rep)

5. Append a new re-encryption block RBnew to RC ′

RBnew ← (rpk, rek)

Finally, append the signature:

sig ← S(RC ′||pskproxy, sskproxy)

RC ← (RC ′, pskproxy, sig)

In summary, on each round of re-encryption (after the first), the rek value from the previous
round is re-encrypted, then the first two pieces of the new re-encryption key are concatenated
as a re-encryption block*.t. Note that the encrypted message em from the original ciphertext
C is only re-encrypted once, at level 2. After that, it is not changed again.

• Dec(params, ski, CT) → m: Decrypt a ciphertext encrypted to user i. As above, we return
⊥ if any parse or verify step fails.

For any ciphertext, the first step is to validate the signature:

1. Parse CT into (C, pskm, sigm)

2. Validate signature, by verifying that

V(C||pskm, pskm, sigm) = true

To decrypt a first-level ciphertext C(1):

1. Parse C into (epk, em, ah)

2. Recover the plaintext m via the operation

m← em · e(epk, (−ski) · g1)

To decrypt a level-l ciphertext C(l):

1. Parse C(l) into (C ′, RB′(2), . . . , RB′(l−1), RB(l))

2. Parse C ′ into (epk, em′, ah)

3. Parse RB(l) into (rpk(l), rek(l))

4. For each integer k in [2, l − 1], parse RB′(k) into (rpk(k), rek′(k))

12

5. Recover the (l − 1)-st temporary key Kl−1 via the operation

Kl−1 ← rek(l) · e(rpk(l), (−ski) · g1)

6. For each integer k from l − 2 down to 1, recover the k-th temporary key Kk via the
operation

Kk ← rek(k+1) · e(rpk(k+1),−H2(Kk+1))

7. Finally, recover the plaintext m via the operation

m← em′ · e(epk,−H2(K1))

After m has been recovered, validate the authentication hash of the ciphertext by verifying
that SHA256(epk||m) = ah

3 Security problems

In [ZW13], the authors showed that the original scheme was not in fact CCA-secure. Zhang and
Wang presented a formal security model for CCA-security, then provided an attack where the proxy
P acts as the adversary.

They showed that the proxy can take a first-level ciphertext, multiply the original epk by a new
factor t · g, where t is randomly chosen from Z∗p, yielding a new epk′ = (esk + t) · g. The proxy
then computes a re-encryption of the message to user j, using the modified epk′ to compute em′.
This re-encryption is valid and satisfies the authentication checks.

By the rules of the game-based definition of CCA-security, the adversary can ask the decryption
oracle to decrypt this ciphertext, since it is not the original encrypted message or a re-encryption of
that message. Since the ciphertext is still valid, it can be decrypted by the oracle acting as user j,
so the adversary knows exactly what plaintext was used to generate the ciphertext. The algorithm
of [WC09] is thus not CCA-secure. It is not clear whether there are any usable exploits that can
be produced by this weakness, or if it just taking advantage of the way the CCA-security game is
structured.

A subsequent paper, [CL14], presents another weakness of the scheme by Wang and Cao. They de-
scribe a “proxy bypass attack.” The fundamental problem is shown by our previous example. When
Carol decrypts a ciphertext that was re-encrypted from Alice to Bob and then from Bob to Carol,
she learns not only the value of the temporary key KB→C that is part of the re-encryption key Bob
generated to delegate decryption to Carol, but also the value of the temporary key KA→B, which
Alice generated to delegate decryption to Bob. Now, if Carol is able to intercept any subsequent
ciphertext that was encrypted to Alice and then re-encrypted to Bob, she simply computes

mnew = em′new · e(epknew,−H2(KA→B)).

4 Fixing security flaws by randomizing re-encryption

In [CL14], the authors provide a workaround to the security flaw. In this workaround, the algorithms
KeyGen, ReKeyGen, and Enc are unchanged. The ReEnc and Dec algorithms are changed as follows:
(additions and modifications are highlighted in red.)

13

In ReEnc:

For the first re-encryption key in the chain, re-encrypt C as follows:

1. If any parse or verify step fails, return ⊥

2. Parse C into (epk, em, ah, pskm, sigm)

3. Parse rki→j into (rpk, rek, rep, pski, sigrk)

4. Validate the signature of the encrypted message, by verifying that

V(epk||em||ah||pskm, pskm, sigm) = true

5. Validate the signature for the re-encryption key, by verifying that

V(rpk||rek||rep||pski, pski, sigrk) = true

6. The randomized re-encryption secret key, rrsk, is chosen randomly from Z∗p
7. The randomized re-encryption temporary key, rrK, is chosen randomly from GT

8. The randomized re-encryption public key is

rrpk← rrsk · g

9. The randomized re-encryption encrypted temporary key is

rrek ← rrK · e(pkj ,g1)rrsk

10. The re-encrypted message is

em′ ← em · e(epk, rep+H2(rrK))

11. The altered ciphertext is
C ′ ← (epk, em′, ah)

12. The re-encryption block is
RB ← (rpk, rek, rrpk, rrek)

13. The re-encrypted ciphertext RC ′, which is not complete, is

RC ′ ← (C ′, RB)

For each subsequent re-encryption key in the chain, rka→b, perform the following:

1. Parse the last re-encryption block of RC ′ into (rpklast, reklast, rrpklast, rreklast)

2. Parse rka→b into (rpk, rek, rep, pska, sigrk)

3. Validate the signature for the re-encryption key, by verifying that

V(rpk||rek||rep||pska, pska, sigrk) = true

14

4. The randomized re-encryption secret key, rrsk, is chosen randomly from Z∗p
5. The randomized re-encryption temporary key, rrK, is chosen randomly from GT

6. The randomized re-encryption public key is

rrpk← rrsk · g

7. The new randomized re-encryption encrypted temporary key is

rrek ← rrK · e(pkj ,g1)rrsk

8. Replace rreklast in the last re-encryption block with

rrek′last ← rreklast · e(rrpklast, rep + H2(rrK))

9. Replace reklast in the last re-encryption block with

rek′last ← reklast · e(rpklast, rep+H2(rrK))

10. Append a new re-encryption block RBnew to RC ′

RBnew ← (rpk, rek, rrpk, rrek)

Finally, append the signature:

sig ← S(RC ′||pskproxy, sskproxy)

RC ← (RC ′, pskproxy, sig)

In Decrypt:

To decrypt a level-l ciphertext C(l):

1. Parse C(l) into (C ′, RB′(2), . . . , RB′(l−1), RB(l))

2. Parse C ′ into (epk, em′, ah)

3. Parse RB(l) into (rpk(l), rek(l), rrpk(l), rreK(l))

4. For each integer k in [2, l − 1], parse RB′(k) into (rpk(k), rek′(k), rrpk(l), rreK ′(l))

5. Recover the (l − 1)-st temporary key Kl−1 via the operation

K(l−1) ← rek(l) · e(rpk(l), (−ski) · g1)

6. Recover the (l − 1)-st random re-encryption temporary key

rrK(l−1) ← rrK(l) · e(rrpk(l), (−ski) · g1)

7. For each integer k from l − 2 down to 1, recover the k-th temporary key Kk and random
re-encryption temporary key rrKk via the operation

Kk ← rek′(k+1) · e(rpk(k+1),−H2(K(k+1)))

rrKk ← rrek′(k+1) · e(rrpk(k+1),−H2(K(k+1) −H2(rrK(k+1)))

8. Finally, recover the plaintext m via the operation

m← em′ · e(epk,−H2(K(1))−H2(rrK(1)))

15

References

[CL14] Y. Cai and X. Liu. A multi-use CCA-secure proxy re-encryption scheme. IEEE 12th
International Conference on Dependable, Autonomic, and Secure Computing, 7, 2014.

[WC09] Hongbing Wang and Zhenfu Cao. A fully secure unidirectional and multi-use proxy re-
encryption scheme. ACM CCS Poster Session, 2009.

[ZW13] J. Zhang and X. A. Wang. On the security of two multi-use CCA-secure proxy re-encryption
schemes. Int. J. Intelligent Information and Database Systems, 7(5):422–440, 2013.

16

	Initial algorithm
	Parameters
	The scheme
	Example

	Simplifying and enhancing authentication
	Parameters
	The scheme

	Security problems
	Fixing security flaws by randomizing re-encryption
	References

