
IronCore Labs’ implementation of the multi-hop PRE

algorithm
Jon Lamar and Bob Wall

March 7, 2018

1 The initial algorithm

This document describes parameter choices, algorithms, and details of our implementa-
tion of the proxy re-encryption algorithm described in [WC09], and updated in [CL14].
The algorithm and its updates are described in more accessible notation, with ex-
amples, in our corresponding document ”The original multi-hop proxy re-encryption
algorithm”.

2 Our choices

Denote the point at infinity of an elliptic curve E by O. We will refer to this point as
the identity of E (as it is the additive identity under the usual group law on E). All
other points of E are called affine points.

Our implementation will use the optimal Ate pairing on the Barreto–Naehrig (see
[BN06]) elliptic curve E defined by the equation y2 = x3 + 3 over extensions of the
finite field Fp, of order p = 36t4 + 36t3 + 24t2 + 6t+ 1, where t = s3 and s = 1868033.
These parameters are chosen to ensure a low Hamming weight of the non-adjacent form
of the value 6t + 2; this value affects the number of adds in the Miller loop used to
evaluate the pairing (see [NNS10]). This curve, E,1 has prime order over the base field
Fp, and that prime is r = 36t4 + 36t3 + 18t2 + 6t+ 1.2 Thus, all affine points of E(Fp)
have additive order r.

However, the optimal Ate pairing will require G1 to be the full r-torsion of the elliptic
curve E(Fp),3 which is defined to be the set of points of E(Fp) with order divisible by
r. However, we do not need to resort to infinite extensions: E(Fp12) contains the full

1We use the notation E for the curve as an algebraic variety and E(k) to talk about the group of
k-valued points of E, where k is any extension of Fp.

2That p and r are prime is not a consequence of the formulae; t must be chosen carefully.
3There is some math jargon here: Fp is the algebraic closure of Fp, which is the union of all of the

extensions of Fp. Thus E(Fp) will contain E(Fpk ) for all k.

1



r-torsion of E(Fp) (see [Cos17, Chapter 4.1]). We use E(Fp12)[r] to denote the r-torsion
of E(Fp12).

Unfortunately, the domain of the optimal Ate pairing e is not all of G1 × G1, and
to describe the restrictions on the input we need to build some terminology. We will
require the left entry to be an element of E(Fp)[r] (i.e., this entry must have entries in
Fp), while the right entry must lie in the trace-zero subgroup of the r-torsion. These
are the points which lie in the kernel of the trace map. The trace map Tr is defined as
follows: if P = (x, y) is a point of E, then

Tr(P ) =

11∑
i=0

(xp
i
, yp

i
). (2.1)

It is important to note that the addition in the above sum is addition in the ellip-
tic curve, i.e., addition using the chord-and-tangent rule. It is not standard vector
addition.

Now, note that if q is a power of p, then the finite field Fqd may be constructed as
an extension of Fq by taking the quotient of the polynomial ring Fq[x] by the ideal
generated by f(x), where f(x) is any irreducible polynomial of degree d over Fq. This
object is usually denoted Fq[x]/(f(x)). For our purposes, we will construct Fp12 as the
top of a tower of extensions of degrees 2 or 3 using polynomials of the form xd − c.
More precisely, we will use the following constructions:

Fp2 = Fp[u]/(u2 + 1)

Fp6 = Fp2 [v]/(v3 − (u+ 3))

Fp12 = Fp6 [w]/(w2 − v).

(2.2)

There is one more alteration that we must make. In order to cut down on computational
costs due to finite field arithmetic (which grows as a function of the degree of the
extension), we can use the following nice property of E: there exists a related curve,
E′, for which an efficiently computable group isomorphism ψ : E′(Fp2) → E(Fp12)
exists. For our choice of parameters so far, E′ will be the elliptic curve defined by the
equation y2 = x3 + 3/(u+ 3) and the isomorphism ψ is defined by the rule

(x, y) 7→ (x · w2, y · w3). (2.3)

The algorithms require two generator points, one (g) on the curve E(Fp), and one in
the trace zero subgroup (g1); that is, a point on E′(Fp2). We chose one of the simplest
points for g - (1, 2). Choosing g1 was more complicated; we followed these steps:

• Pick a point P on E′ by choosing x = 1 and finding the y value by computing
sqrt(x3 + 3/(u+ 3)). We arbitrarily chose the positive root.

• Multiply P by the value r2 = p + p − r to get P ′; since the order of E′(Fp2) is
r ∗ r2, P ∗ r2 is guaranteed to be a point on the r-torsion.

2



• Compute the anti-trace of P ′ to generate an element of the trace-zero subgroup.

3 Implementation

For the remainder of this document, let E be the curve defined above, with all notation
as in that section.

3.1 Finite field arithmetic

The key ideas behind our implementation for finite field arithmetic are taken from
[BS10] and related papers. We use the sequence of extensions

Fp ⊂ Fp2 ⊂ Fp6 ⊂ Fp12

to represent Fp12 , with the embeddings defined by (2.2). Some of the basic operations
were optimized using methods from [DhSD06].

We used Karatsuba multiplication for elements of Fp2 and Fp12 (see [KO63]), which is
implmented as follows (see [DhSD06]):
Algorithm 3.1 (Karatsuba multiplication in a degree-2 field extension). Input: ele-
ments a = a0 +a1x and b = b0 + b1x of the degree-2 extension k[x]/(x2−β) of the field
k. Output: c = a · b.

1. Let t0 ← a0 · a0.

2. Let t2 ← a1 · b1.

3. Let t1 ← (a1 + a0) · (b1 + b0).

4. Let c0 ← t0 + β · t2.

5. Let c1 ← t1 − t2 − t0.

6. Return c = c0 + c1x.

Inversion in Fp6 is implemented using [MJ17, Algorithm 5.23], which is as follows.
Algorithm 3.2. Input: element a = a0 + a1v + a2v

2 of Fp6 represented as an element
of Fp2 [v]/(v3 − (u+ 3)). Output: c = a−1.

1. Let t0 ← a20.

2. Let t1 ← a21.

3. Let t2 ← a22.

4. Let t3 ← a0 · a1.

5. Let t4 ← a0 · a2.

3



6. Let t5 ← a1 · a2.

7. Let A← t0 − (u+ 3) · t5.

8. Let B ← (u+ 3) · t2 − t3.

9. Let C ← t1 − t4.

10. Let t6 ← t0 ·A.

11. Let t6 ← t6 + ((u+ 3) · a2 ·B).

12. Let t6 ← t6 + ((u+ 3) · a1 · C).

13. Let F ← t−16 .

14. Let c0 ← A · F .

15. Let c1 ← B · F .

16. Let c2 ← C · F .

17. Return c = c0 + c1v + c2v
2.

Inversion in Fp12 is implemented using [MJ17, Algorithm 5.19], which is as follows.
Algorithm 3.3. Input: element a = a0 + a1w of Fp12 represented as an element of
Fp6 [w]/(w2 − v). Output: c = a−1.

1. Let t0 ← a20.

2. Let t1 ← a21.

3. Let t0 ← t0 + v · t1.

4. Let t1 ← t−10 .

5. Let c0 ← a0 · t1.

6. Let c1 ← −a1 · t1.

7. Return c = c0 + c1v.

3.2 Pairing

Recall the trace map, Tr, which is defined in (2.1). There is a related map, called the
anti-trace, defined by the formula

aTr(P ) = 12 · P − Tr(P ).

The trace-zero subgroup of the r-torsion of E is the kernel of the trace map. These are
the points P for which Tr(P ) is the identity. We can obtain elements of the trace-zero
subgroup by taking the anti-trace of arbitrary elements of the r-torsion.

4



Let P = (xP , yP ), Q = (xQ, yQ), and R = (xR, yR) be nonidentity points (i.e., not
equal to the point at infinity) on E represented in affine coordinates. Define

`Q,R(P ) = yP − yQ − λ · (xP − xQ),

where λ is defined as follows: if Q 6= R, then λ = (yR − yQ)/(xR − xQ) is the slope of
the line through Q and R, otherwise if Q = R, then λ = 3x2Q/2yQ is the slope of the
line through Q tangent to E.

For a point P ∈ E and a positive integer n, we define a function fn,P recursively by
the rules f0,P ≡ 1 and

fn,P = fn−1,P ·
`(n−1)P,P

vnP
,

where vQ(R) = xR − xQ in affine coordinates (see [Cos17, Chapter 3, Chapter 5] for
more intuition and properties regarding this function). The optimal Ate pairing is the
bilinear pairing e : G×G→ Fp12 is defined by the formula

e(P,Q) =
(
f6t+2,Q(P ) · `(6t+2)Q,πp(Q)(P ) · `(6t+2)Q+πp(Q),−π2

p(Q)(P )
) p12−1

r , (3.1)

where (see Section 2):

1. t is the Barreto–Naehrig parameter t = (1868033)3;

2. p = 36t4 + 36t3 + 24t2 + 6t+ 1 is the size of the base field Fp;

3. πp is the Frobenius p-power map: πp(x, y) = (xp, yp);

4. r = 36t4 + 36t3 + 18t2 + 6t+ 1 is the (prime) order of E(Fp);

5. P is any element of E(Fp) of order r;

6. Q is any element of the trace-zero subgroup of the r-torsion E(Fp12)[r].

Our implementation of the optimal Ate pairing is based on the papers [NNS10], [BGDM+10],
[DSD07], and [SBC+09].

3.2.1 Using a sextic twist

The computation of e(P,Q) is broadly split into two steps: the first is the computation
of f6t+2,Q(P ) and its product with the two line functions of (3.1), and the second is the
exponentiation of that product to the power of (p12 − 1)/r. The computational cost
of the first of these two steps can be significantly decreased using the sextic twist ψ as
defined in (2.3).

In our implementation, this is done by representing any point of the r-torsion other than
P with its preimage under ψ, and precomposing all operations involving these points

5



with ψ. In particular (and for example) if Q = (x, y) ∈ E′(Fp2)[r], the Frobenius map
πp becomes

π′p(Q) = (ψ−1 ◦ πp ◦ ψ)(Q) = (w2(p−1)x,w3(p−1)y)

and the line function `Q,R(P ) becomes

`′Q,R(P ) = `ψ(Q),ψ(R)(P ).

3.2.2 Miller’s algorithm

We directly implemented [BGDM+10, Algorithm 1], which is a non-adjacent form
(NAF) version of Miller’s algorithm. The algorithm (hereafter referred to as the Miller
loop) is as follows.
Algorithm 3.4. Input: order r element P ∈ E(Fp), trace-zero element Q ∈ E′(Fp2)[r].
Output: optimal Ate pairing e(P,ψ(Q)).

1. Write u = 6t + 2 in non-adjacent form as u =
∑L−1

i=0 ui2
i, where each ui ∈

{−1, 0, 1}.

2. Let R← Q.

3. Let f ← 1.

4. for i = L− 2 down to 0, do:

(a) Let (f,R)← (f2 · `′R,R(P ), 2R).

(b) If ui = −1, then let (f,R)← (f · `′T,−Q(P ), R−Q).

(c) Else if ui = 1, then let (f,R)← (f · `′T,Q(P ), R+Q).

5. Let Q1 ← π′p(Q).

6. Let Q2 ← π′p(Q1).

7. Let (f,R)← (f · `′R,Q1
(P ), R+Q1).

8. Let f ← f · `′R,−Q2
(P ).

9. Let f ← f
p4−p2+1

r .

10. Return f .

3.2.3 Line functions and projective coordinates

Much of the computational cost of the Miller loop is associated with the evaluation
of the line functions `′Q,R(P ). We save some time here by representing Q and R in
homogeneous projective coordinates and P in affine coordinates. This is the method
of [DSD07].

6



3.2.4 Final exponentiation

Once we have computed the inside of (3.1), the remaining step is to raise this value
(an element of Fp12 , which we hereafter denote f) to the power of (p12 − 1)/r. First,
we factor (p12 − 1)/r as (p6 − 1)(p2 + 1)(p4 − p2 + 1)/r, so that

f
p12−1

r =
(
(fp

6−1)p
2+1
) p4−p2+1

r .

The first two exponentiations (in order of operations) of the right-hand side involve
exclusively the Frobenius p-power map4 and inversion on Fp12 , both of which can be im-
plemented efficiently using standard algorithms. The outermost exponentiation (called
the “hard” exponentiation) is implemented be expressing (p4−p2+1)/r as a polynomial
in the Barreto–Naehrig parameter t and its cube root s = 3

√
t = 1868033:

p4 − p2 + 1

r
= p3 + (6t2 + 1)p2 + (−36t3 − 18t2 − 12t+ 1)p+ (−36t3 − 30t2 − 18t− 2).

Thus, the hard exponentiation can be further reduced to the following form:

f
p4−p2+1

r = (fp
3
) · (fp2)6t

2+1 · (fp)−36t3−18t2−12t+1 · f−36t3−30t2−18t−2.

An efficient algorithm for computing the above expression is as follows.

Algorithm 3.5. [DSD07, Algorithm 3] Input: An element f of Fp12 . Output: f
p4−p2+1

r .

1. Let a← f−6s
3−5.

2. Let b← ap using the Frobenius map on Fp12 .

3. Let b← ab.

4. Compute fp, fp
2
, and fp

3
using Frobenius.

5. Let f ← fp
3 · [b · (fp)2 · fp2 ]6s

6+1 · b · (fp · f)9 · a · f4.

6. Return f .

In [GS10, Section 3], the authors note that after the “easy” exponentiation, the variable
f and its powers have some nice properties: in particular inversion is the same as
complex conjugation and therefore is essentially computationally free. Hence, we can
use a non-adjacent form version of the square-and-multiply routine for the powers in
the above algorithm (as opposed to a standard square-and-multiply routine). We can
also save some time when squaring elements of Fp12 using the results of Section 3.1 of
that paper.

4Maps related to exponentiation by the characteristic of the underlying field are often referred to as
“Frobenius” maps for theoretical and historic reasons. For our purposes, this is merely coordinate-wise
exponentiation by p.

7



4 Distributed key generation

We have made an adjustment to the proxy re-encryption algorithm to enhance the revo-
cation capabilities. When we generate keypairs for users or groups, we do a distributed
computation, where the user device generates an initial keypair, but the proxy server
generates an initial component of the keypair and uses this to augment the user’s or
group’s public key. The proxy server does not disclose the private component of the
keypair to the user or any group member. In this way, if someone encrypts a message
to the public key, the user or group does not have the necessary private key to actually
decrypt the message. It must request a re-encryption of the message to a device that is
associated with the user. Device keypairs are not augmented in this way, so the device
has a private key that is able to decrypt the message.

In order to allow for distributed key generation, we must alter some of the algorithms
of the proxy re-encryption scheme (from the already altered versions described in the
other paper on the initial algorithm). The algorithms Enc and ReEnc are unchanged.
The KeyGen, ReKeyGen, and Dec algorithms are changed as shown below (additions
and modifications are highlighted in red).

NOTE: the changes to the Dec algorithm are only required to allow a private key
associated with an augmented public key to decrypt a message. This is only included
for completeness; in our implementation, device public keys are never augmented, and
we only allow device keys to decrypt messages, so we use the original Dec algorithm.

The algorithm KeyGen(params)→ (pk, sklocal, skproxy): Generate a public/private key
pair for a user. On input params, the client performs the following steps:

1. Let the local secret key sklocal be chosen randomly from Z∗p
2. The unaugmented public key is computed by

pk′ ← sklocal · g

The public key pk′ is transmitted to the proxy Pi that is responsible for re-encrypting
user i’s messages. Pi then performs the following steps to augment the key:

1. Let the proxy secret key skproxy be chosen randomly from Z∗p
2. The public key is computed by

pk ← pk′ + skproxy · g

pk is the public key that everyone will use to encrypt messages to the user.5

The algorithm ReKeyGen(params, sklocal,i,pkj , pski, sski) → rki→j : Generate a re-
encryption key from user i (the delegator) to user j (the delegatee), given proxy Pi

5The proxy secret key skproxy is kept by Pi, and the local secret key sklocal is kept by the client.

8



associated to user i. The proxy Pi will perform the actual re-encryption of ciphertexts
encrypted to user i after that user has delegated decryption to user j.

1. Let the re-encryption secret key, rsk, be chosen randomly from Z∗p
2. Let the temporary key K be chosen randomly from GT

3. Let the re-encryption public key be rpk← rsk · g

4. Let the encrypted temporary key be

rek ← K · e(pkj ,g1)esk

5. Let the re-encryption point be

rep← H2(K) + (−ski) · g1

6. The signature is
sig ← S(rpk||rek||rep||pski, sski)

7. The re-encryption key is

rki→j ← (rpk, rek, rep, pski, sig)

8. The re-encryption key is sent to the proxy via a secure channel. The proxy then
computes

rep← rep +−skproxy,i · g1
and updates the re-encryption key with this modified rep value before storing
the key.

The algorithm Dec(params, sklocal,i, C
(l), Pi) → m: Decrypt a ciphertext encrypted

to user i, using the proxy Pi. This is never needed in our system, because we never
attempt to decrypt an encrypted message that has not been transformed, but if we had
that use case, we would do the following:

To Decrypt a first-level ciphertext C(1):

1. Parse C(1) into (epk, em, ah)

2. Let
m← em · e(epk, (−sklocal,i) · g1)

3. The variables epk and m are transmitted to the proxy Pi, who computes6

m← m · e(epk, (−skproxy,i) · g1)

and returns m as the final plaintext.

6We always decrypt on a device, and messages are always encrypted to a group or a user, so we
never actually decrypt a first-level ciphertext.

9



To decrypt a level-l ciphertext C(l) (l > 1):

1. Parse C(l) into (C ′, RB′(2), . . . , RB′(l−1), RB(l))

2. Parse C ′ into (epk, em′, ah)

3. Parse RB(l) into (rpk(l), rek(l), rrpk(l), rrek(l), pskproxy, sig)

4. For each integer k in [2, l−1], parseRB′(k) into (rpk(k), rek′(k), rrpk(k), rrek′(k), pskproxy, sig)

5. Let
Kl−1 ← rek(l) · e(rpk(l), (−sklocal,i) · g1)

6. Let
rrKl−1 ← rrek(l) · e(rrpk(l), (−sklocal,i) · g1)

7. The variables Kl−1, rrKl−1, rpk
(l), and rrpk(l) are transmitted to the proxy Pi,

who computes7

Kl−1 ← Kl−1 · e(rpk(l), (−skproxy,i) · g1)

and
rrKl−1 ← Kl−1 · e(rrpk(l), (−skproxy,i) · g1)

8. For each integer k from l − 2 down to 1, recover the k-th temporary key Kk via
the operation

Kk ← rek(k+1) · e(rpk(k+1),−H2(Kk+1))

and recover the k-th randomized re-encryption temporary key rrKk via the op-
eration

rrKk ← rrek(k+1) · e(rrpk(k+1),−H2(rrKk+1)−H2(Kk+1))

9. Finally, recover the plaintext m via the operation

m← em′ · e(epk,−H2(K1)−H2(rrK1))

References

[BGDM+10] Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mitsunari, Eiji
Okamoto, Francisco Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-
Speed Software Implementation of the Optimal Ate Pairing over Barreto–
Naehrig Curves, pages 21–39. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.

7Note that this is only necessary if the public key for the last designee was augmented by the proxy.
For our cases, the last re-encryption will always be to a device, and the device’s public key was not
augmented, so this step will not be necessary.

10



[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Ellip-
tic Curves of Prime Order, pages 319–331. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

[BS10] Naomi Benger and Michael Scott. Constructing Tower Extensions of
Finite Fields for Implementation of Pairing-Based Cryptography, pages
180–195. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[CL14] Y. Cai and X. Liu. A multi-use CCA-secure proxy re-encryption scheme.
IEEE 12th International Conference on Dependable, Autonomic, and Se-
cure Computing, 7, 2014.

[Cos17] Craig Costello. Pairings for Beginners, 2017.

[DhSD06] Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo
Dahab. Multiplication and squaring on pairing-friendly fields, 2006. au-
gusto@ic.unicamp.br 13564 received 13 Dec 2006, last revised 20 Feb 2007.

[DSD07] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. Implement-
ing Cryptographic Pairings over Barreto-Naehrig Curves, pages 197–207.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[GS10] Robert Granger and Michael Scott. Faster Squaring in the Cyclotomic
Subgroup of Sixth Degree Extensions, pages 209–223. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on
Automata. Soviet Physics Doklady, 7:595, January 1963.

[MJ17] N.E. Mrabet and M. Joye. Guide to Pairing-Based Cryptography. Chap-
man & Hall/CRC Cryptography and Network Security Series. CRC Press,
2017.

[NNS10] Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New soft-
ware speed records for cryptographic pairings. In LATINCRYPT 2010.
Springer Verlag, January 2010.

[SBC+09] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J.
Dominguez Perez, and Ezekiel J. Kachisa. On the Final Exponentia-
tion for Calculating Pairings on Ordinary Elliptic Curves, pages 78–88.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[WC09] Hongbing Wang and Zhenfu Cao. A fully secure unidirectional and multi-
use proxy re-encryption scheme. ACM CCS Poster Session, 2009.

11


	The initial algorithm
	Our choices
	Implementation
	Finite field arithmetic
	Pairing
	Using a sextic twist
	Miller's algorithm
	Line functions and projective coordinates
	Final exponentiation


	Distributed key generation
	References

