-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdvancedLaneFinding.py
435 lines (353 loc) · 16.9 KB
/
AdvancedLaneFinding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from moviepy.editor import VideoFileClip
from IPython.display import HTML
import cv2
import numpy as np
import matplotlib.pyplot as plt
import glob
import matplotlib.image as mping
import collections
#Calibrating Camera Lecture
cal_images = glob.glob('camera_cal/*.jpg')
objpoints = []
imgpoints = []
# prepare object points
objp = np.zeros((9*6,3),np.float32)
objp[:,:2] = np.mgrid[0:9, 0:6].T.reshape(-1,2)
for fname in cal_images:
# Read Image
image = mping.imread(fname)
# Convert to gray scale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Find Chess Board Corners
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
# If Corners are found, add object points, and image points
if ret == True:
imgpoints.append(corners)
objpoints.append(objp)
def undistortImage(img, objpoints, imgpoints):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
undist=cv2.undistort(img, mtx, dist, None, mtx)
return undist
def abs_sobel_thresh(gray, orient='x', sobel_kernel=3, thresh=(0, 255)):
# Apply x or y gradient with the OpenCV Sobel() function
# and take the absolute value
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0))
if orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1))
# Rescale back to 8 bit integer
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
# Create a copy and apply the threshold
binary_output = np.zeros_like(scaled_sobel)
# Here I'm using inclusive (>=, <=) thresholds, but exclusive is ok too
binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
# Return the result
return binary_output
def mag_threshold(gray, sobel_kernel=3, thresh=(0, 255)):
# Take both Sobel x and y gradients
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# Calculate the gradient magnitude
gradmag = np.sqrt(sobelx**2 + sobely**2)
# Rescale to 8 bit
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
# Create a binary image of ones where threshold is met, zeros otherwise
binary_output = np.zeros_like(gradmag)
binary_output[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1
# Return the binary image
return binary_output
def dir_threshold(gray, sobel_kernel=3, thresh=(0, np.pi/2)):
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize = sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize = sobel_kernel)
# 3) Take the absolute value of the x and y gradients
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx))
# 5) Create a binary mask where direction thresholds are met
binary_output = np.zeros_like(absgraddir)
binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
# 6) Return this mask as your binary_output image
return binary_output
def Threshold(img, thresh=(0, 255)):
# 2) Apply a threshold
result = np.zeros_like(img)
result[(img > thresh[0]) & (img <= thresh[1])] = 1
# 3) Return a binary image of threshold result
return result
def HeavyFilter(img, ksize = 13, mag_thresh = (45, 175), dir_thresh = (0.7, 1.25)):
img = np.copy(img)
#Get red channel
r_channel = img[:,:,0]
# Convert to HLS color space and separate the S channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
R = Threshold(r_channel,(205,255))
S = Threshold(s_channel,(95,255))
gradxs = abs_sobel_thresh(s_channel, orient='x', sobel_kernel=ksize, thresh = (15,120))
gradxr = abs_sobel_thresh(r_channel, orient='x', sobel_kernel=ksize, thresh = (10,120))
mag_binary_s = mag_threshold(s_channel, sobel_kernel=ksize, thresh=(65, 175))
combined = np.zeros_like(R)
combined[((S == 1) & (R == 1)) | (mag_binary_s == 1) | ((gradxs == 1) & (gradxr == 1))] = 1
return combined
def LightFilter(img, ksize=13, sx_thresh=(20, 100), mag_thresh = (45, 175), dir_thresh = (0.7, 1.25)):
img = np.copy(img)
# Convert to Gray
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
# Sobel x on s
sobelx_s = abs_sobel_thresh(s_channel, orient='x', sobel_kernel=ksize, thresh=sx_thresh)
# Magnitude and direction on gray
mag_binary_gray = mag_threshold(gray, sobel_kernel=ksize, thresh=mag_thresh)
dir_binary_gray = dir_threshold(gray, sobel_kernel=ksize, thresh=dir_thresh)
# Combine
binary = np.zeros_like(sobelx_s)
binary[((mag_binary_gray == 1) & (dir_binary_gray == 1)) | (sobelx_s == 1)] = 1
return binary
def Pipeline(image):
undist = undistortImage(image, objpoints, imgpoints)
return HeavyFilter(undist)
def Warp_Test(image):
img_size = (image.shape[1], image.shape[0])
# Move points around more to get better transformation
src = np.float32(
[[img_size[0] * 0.45, img_size[1] * 0.63],
[ img_size[0] * .1, img_size[1]],
[ img_size[0] * .9, img_size[1]],
[ img_size[0] * 0.55, img_size[1] * 0.63]])
dst = np.float32(
[[img_size[0] * 0.3, 0],
[img_size[0] * 0.3, img_size[1]],
[img_size[0] * 0.7, img_size[1]],
[img_size[0] * 0.7, 0]])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(image, M, img_size)
return(src, dst, warped, Minv)
def Warp(image):
src, dest, warped, Minv = Warp_Test(image)
return (warped, Minv)
def find_lane_pixels(binary_warped):
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[int(binary_warped.shape[0]*0.65):,:], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
#leftx_base = int(midpoint/2 +125)
#rightx_base = int(midpoint + midpoint/2 -75)
# Choose the number of sliding windows
nwindows = 16
# Set height of windows
window_height = np.int(binary_warped.shape[0]//nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 75
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return (leftx, lefty, rightx, righty)
def fit_poly(img_shape, leftx, lefty, rightx, righty):
### TO-DO: Fit a second order polynomial to each with np.polyfit() ###
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, img_shape[0]-1, img_shape[0])
### TO-DO: Calc both polynomials using ploty, left_fit and right_fit ###
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
return left_fitx, right_fitx, ploty
def search_around_poly(binary_warped, left_fit, right_fit):
# HYPERPARAMETER
# Choose the width of the margin around the previous polynomial to search
margin = 50
# Grab activated pixels
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
### TO-DO: Set the area of search based on activated x-values ###
### within the +/- margin of our polynomial function ###
### Hint: consider the window areas for the similarly named variables ###
### in the previous quiz, but change the windows to our new search area ###
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return (leftx, lefty, rightx, righty)
def getCurvature(x, y, y_eval):
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
y_eval = ym_per_pix* y_eval
fit = np.polyfit(y*ym_per_pix, x*xm_per_pix, 2)
# Calculate radii of curvature
curverad = ((1 + (2*fit[0]*y_eval + fit[1])**2)**1.5) / np.absolute(2*fit[0])
return (curverad)
def getCenterOffset(left_fitx, right_fitx, center):
xm_per_pix = 3.7/700 # meters per pixel in x dimension
lane_center = (left_fitx[-1] + right_fitx[-1]) / 2.0
return((lane_center - center) * xm_per_pix)
#Create pipeline for video
# Define a class to receive the characteristics of each line detection
class Line():
def __init__(self):
self.minPoints = 10
self.nFilterFrames = 5
# Is first Frame
self.FirstFrame = True
# was the line detected in last iteration
self.detected = False
# is line detected for current iteration
self.valid = False
#radius of curvature of the line in some units
self.radius_of_curvature = collections.deque(maxlen=self.nFilterFrames)
# running average of polynomials
self.allPolys = collections.deque(maxlen=self.nFilterFrames)
def getBestFit(self):
print("Number of Lines = ",len(self.allPolys))
return np.mean(self.allPolys, axis = 0)
def addPoly(self, fit, curvature):
self.valid = True
self.allPolys.append(fit)
self.radius_of_curvature.append(curvature)
def getCurvature(self):
return np.mean(self.radius_of_curvature)
def VideoPipeline(img):
global LeftLine
global RightLine
binaryWarped, Minv = Warp(Pipeline(img))
ploty = np.linspace(0, binaryWarped.shape[0]-1, binaryWarped.shape[0])
if(LeftLine.detected & RightLine.detected):
left_fitx = LeftLine.getBestFit()
right_fitx = RightLine.getBestFit()
leftx, lefty, rightx, righty = search_around_poly(binaryWarped, left_fitx, right_fitx)
else:
leftx, lefty, rightx, righty = find_lane_pixels(binaryWarped)
# Check if we found enough points
if (rightx.size > RightLine.minPoints):
RightLine.detected = True
else:
RightLine.detected = False
if (leftx.size > LeftLine.minPoints):
LeftLine.detected = True
else:
LeftLine.detected = False
if(RightLine.detected & LeftLine.detected):
if(RightLine.FirstFrame | LeftLine.FirstFrame):
RightLine.FirstFrame = False
LeftLine.FirstFrame = False
leftCurve = getCurvature(leftx, lefty, 719)
rightCurve = getCurvature(rightx, righty, 719)
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
LeftLine.addPoly(left_fit, leftCurve)
RightLine.addPoly(right_fit, rightCurve)
else:
leftCurve = getCurvature(leftx, lefty, 719)
rightCurve = getCurvature(rightx, righty, 719)
# make sure curvature is close
if (abs((min(leftCurve, rightCurve) / max(leftCurve, rightCurve))) > 0.4):
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# make sure polynomial is in same direction
if((left_fit[0] * right_fit[0]) > 0):
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
LeftLine.addPoly(left_fit, leftCurve)
RightLine.addPoly(right_fit, rightCurve)
else:
print("Skipping Frame Polynomial")
LeftLine.valid = False
RightLine.valid = False
else:
print("Skipping Frame Curvature")
LeftLine.valid = False
RightLine.valid = False
if (RightLine.FirstFrame & (not RightLine.detected) | LeftLine.FirstFrame & (not LeftLine.detected)):
# Skip
return image
elif(not LeftLine.valid):
left_fit = LeftLine.getBestFit()
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fit = RightLine.getBestFit()
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
else:
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Create an image to draw the lines on
warp_zero = np.zeros_like(binaryWarped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(img, 1, newwarp, 1.0, 0)
curv = (LeftLine.getCurvature() + RightLine.getCurvature())/2.0
curvature = "Estimated lane curvature %.2fm" % (curv)
distance_center = "Estimated offset from lane center %.2fm" % (getCenterOffset(left_fitx, right_fitx, result.shape[1]/2.0))
font = cv2.FONT_HERSHEY_COMPLEX
cv2.putText(result, curvature, (30,60), font, 1.5, (255,0,0), 2)
cv2.putText(result, distance_center, (30,120), font, 1, (255,0,0), 2)
return result
if(1):
LeftLine = Line()
RightLine = Line()
write_output = 'result_final.mp4'
clip1 = VideoFileClip("project_video.mp4")
write_clip = clip1.fl_image(VideoPipeline)
write_clip.write_videofile(write_output, audio=False)