Skip to content

Latest commit

 

History

History
146 lines (102 loc) · 8.7 KB

README.md

File metadata and controls

146 lines (102 loc) · 8.7 KB

LBYL - code

This is the authors' implementation of the following paper: LeaveBeforeYouLeave: Training-Free Restoration of Pruned Neural Networks Without Fine-Tuning

Contents

  1. Requirements
  2. Pre-trained models and Dataset
  3. Our experimental setting(GPU and CPU)

1 Requirements

Python environment & main libraries:

  • python 3.7
  • pytorch 1.7
  • torchvision 0.8
  • scikit-learn 0.23
  • numpy 1.19
  • scipy 1.5
  • torchsummaryx 1.3.0

2 Pre-trained models and Dataset

We release the pretrained models for CIFAR-10 and CIFAR-100 in save_models directory and also use pretrained ResNet-34 and ResNet-101 on ImageNet, both of which are released by PyTorch. If you run the experiments for ImageNet, you should download the ImageNet(ILSVRC2012) validatation set.

Arguments

Required:

  • --dataset: Choose datset. Option: fashionMNIST or cifar10 or cifar100 or ImageNet
  • --arch : Choose architecture Option: LeNet_300_100 on fashionMNIST or VGG16 on cifar10 or ResNet50 on cifar100 or ResNet34 on ImageNet or ResNet101 on ImageNet
  • --model-type: Choose model type Option: OURS or merge or prune or coreset for LeNet-300-100 and ResNet50
  • --criterion : Choose criterion Option: l2-norm or l2-GM or l1-norm or random_1 or random_2 or random_3
  • --lamda-1 : Choose lambda_1
  • --lamda-2 : Choose lambda_2
  • --pruning-ratio : Choose pruning ratio

LeNet-300-100 on FashionMINST

The following results can be reproduced with command:

python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 0.3 --pruning-ratio 0.5
python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 0.6 --pruning-ratio 0.6
python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 0.3 --pruning-ratio 0.7
python main.py --arch LeNet_300_100 --pretrained ./saved_models/LeNet_300_100.original.pth.tar --model-type OURS --dataset fashionMNIST --criterion l2-norm --lamda-1 0.0 --lamda-2 1e-06 --pruning-ratio 0.8

Pruning Criterion : L2 - norm

Pruning ratio lamda2 acc(Ours) acc(NM) acc(prune)
50% 0.3 88.83 87.86 87.86
60% 0.6 87.75 88.07 83.03
70% 0.3 83.92 83.27 71.21
80% 1e-06 78.05 77.11 63.9

We offer the implementation of Coreset in LeNet-300-100 on FashionMNIST. If you test the implementation of Coreset, run the below command.

python Test_Coreset.py --pruning-ratio 0.5

VGG16 on CIFAR-10

The following results can be reproduced with command:

python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000006 --lamda-2 0.0001 --pruning-ratio 0.1
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000004 --lamda-2 0.006 --pruning-ratio 0.2
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000001 --lamda-2 0.01 --pruning-ratio 0.3
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.000002 --lamda-2 0.01 --pruning-ratio 0.4
python main.py --arch VGG16 --pretrained ./saved_models/VGG.cifar10.original.pth.tar --model-type OURS --criterion l2-norm --lamda-1 0.00004 --lamda-2 0.0002 --pruning-ratio 0.5

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.000006 0.0001 92.04 91.93 89.43
20% 0.000004 0.006 87.84 87.24 71.77
30% 0.000001 0.01 83.25 76.91 56.95
40% 0.000002 0.01 66.81 54.32 31.74
50% 0.00004 0.0002 45.71 32.58 12.37

ResNet50 on CIFAR-100

We only provide implementation of Coreset in ResNet-50 on CIFAR-100 because authors of Coreset did not offer the implementation on CNNs. If you test the Coreset, run the below command

python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type coreset --dataset cifar100 --pruning-ratio 0.1

The following results can be reproduced with command:

python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00002 --lamda-2 0.006 --pruning-ratio 0.1
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00001 --lamda-2 0.002 --pruning-ratio 0.2
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00001 --lamda-2 0.002 --pruning-ratio 0.3
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.00001 --lamda-2 0.001 --pruning-ratio 0.4
python main.py --arch ResNet50 --pretrained ./saved_models/ResNet.cifar100.original.50.pth.tar --model-type OURS --dataset cifar100 --criterion l2-norm --lamda-1 0.000001 --lamda-2 0.001 --pruning-ratio 0.5

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.00002 0.006 78.14 77.28 75.14
20% 0.00001 0.002 76.15 72.73 63.39
30% 0.00001 0.002 73.29 64.47 39.96
40% 0.00001 0.001 65.21 46.4 15.32
50% 0.000001 0.001 52.61 25.98 5.22

ResNet34 on ImageNet

The following results can be reproduced with command:

python main.py --arch ResNet34 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.00007 --lamda-2 0.05 --pruning-ratio 0.1
python main.py --arch ResNet34 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.00002 --lamda-2 0.07 --pruning-ratio 0.2
python main.py --arch ResNet34 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.0005 --lamda-2 0.03 --pruning-ratio 0.3

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.00007 0.05 69.22 66.96 63.74
20% 0.00002 0.07 62.49 55.7 42.81
30% 0.0005 0.03 47.59 39.22 17.02

ResNet101 on ImageNet

The following results can be reproduced with command:

python main.py --arch ResNet101 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.000004 --lamda-2 0.02 --pruning-ratio 0.1
python main.py --arch ResNet101 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.000001 --lamda-2 0.02 --pruning-ratio 0.2
python main.py --arch ResNet101 --model-type OURS --dataset ImageNet --criterion l2-norm --lamda-1 0.000002 --lamda-2 0.03 --pruning-ratio 0.3

Pruning Criterion : L2 - norm

Pruning ratio lamda1 lamda2 acc(Ours) acc(NM) acc(prune)
10% 0.000004 0.02 74.59 72.36 68.9
20% 0.000001 0.02 68.47 61.42 45.78
30% 0.000002 0.03 55.51 37.38 10.32

Hyperparameters

3 Our experimental setting

We use NVIDIA Quadro RTX 6000 GPU and Intel Core Xeon Gold5122