forked from norhanreda/neural-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mlp.py
102 lines (76 loc) · 3.22 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import cv2
import os
import numpy as np
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
import joblib
import cv2
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
# Define the directory where the hand gesture images are stored
dataset_dir = "dataset\dataset\Woman"
# dataset_dir = "dataset_sample\Women"
labels = []
features=[]
# Define the HOG parameters
win_size = (64, 64)
block_size = (16, 16)
block_stride = (8, 8)
cell_size = (8, 8)
nbins = 9
lower_skin = np.array([0, 135, 85])
upper_skin = np.array([255, 180, 135])
for sub_dir in os.listdir(dataset_dir):
sub_dir_path = os.path.join(dataset_dir, sub_dir)
if not os.path.isdir(sub_dir_path):
continue
# Iterate through each image file in the subdirectory
for file_name in os.listdir(sub_dir_path):
if not file_name.endswith(".JPG"):
continue
image_path = os.path.join(sub_dir_path, file_name)
image = cv2.imread(image_path)
image= cv2.resize(image,(128,128))
ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
mask = cv2.inRange(ycrcb, lower_skin, upper_skin)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contour = max(contours, key = len)
min_x, min_y, w, h = cv2.boundingRect(contour)
new_img = np.zeros((h, w), dtype=np.uint8)
contour = contour - [min_x, min_y]
cv2.drawContours(new_img, [contour], 0, 255, -1)
new_img= cv2.resize(new_img,(128,128))
# Initialize HOG descriptor
hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, nbins)
# Compute HOG features
hog_features = hog.compute(new_img)
features.append(hog_features)
print(sub_dir)
labels.append(sub_dir)
features = np.array(features)
labels = np.array(labels)
print(labels.shape)
# Split the dataset into training and testing sets
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.25, random_state=42)
print('Shape of train_images:', train_features.shape)
print('Shape of train_labels:', train_labels.shape)
print('Shape of test_images:', test_features.shape)
print('Shape of test_labels:', test_labels.shape)
# Create an MLP classifier with 2 hidden layers, each with 10 neurons
mlp = MLPClassifier(hidden_layer_sizes=(10,10), max_iter=1000)
# Train the model on the training data
mlp.fit(train_features, train_labels)
# Test the model on the testing data
accuracy = mlp.score(test_features, test_labels)
print("Accuracy:", accuracy*100)
# Save the trained classifier to a file
# joblib.dump(svm_classifier, 'svm_classifier.joblib')
# # Predict the labels of the test set using the trained SVM classifier
# predicted_labels = svm_classifier.predict(test_features)
# # Compute the accuracy of the SVM classifier
# accuracy = accuracy_score(test_labels, predicted_labels)
# print("Accuracy: {:.4f}%".format(accuracy * 100))