-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
455 lines (380 loc) · 15.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import json
import os
import torch.nn as nn
import torch
from torch.nn import functional as F
from PIL import Image
import numpy as np
import pandas as pd
import random
import numbers
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
from tqdm import tqdm
from fvcore.nn import FlopCountAnalysis
from fvcore.nn.parameter_count import parameter_count
import matplotlib.pyplot as plt
#-------------------------------------------------------------
#-----------------PREDEFINED FUNCTIONS------------------------
#-------------------------------------------------------------
def poly_lr_scheduler(optimizer, init_lr, iter, lr_decay_iter=1, max_iter=300, power=0.9):
"""Polynomial decay of learning rate
:param init_lr is base learning rate
:param iter is a current iteration
:param lr_decay_iter how frequently decay occurs, default is 1
:param max_iter is number of maximum iterations
:param power is a polymomial power
"""
# if iter % lr_decay_iter or iter > max_iter:
# return optimizer
lr = init_lr*(1 - iter/max_iter)**power
optimizer.param_groups[0]['lr'] = lr
return lr
# return lr
def get_label_info(csv_path):
# return label -> {label_name: [r_value, g_value, b_value, ...}
ann = pd.read_csv(csv_path)
label = {}
for iter, row in ann.iterrows():
label_name = row['name']
r = row['r']
g = row['g']
b = row['b']
class_11 = row['class_11']
label[label_name] = [int(r), int(g), int(b), class_11]
return label
def one_hot_it(label, label_info):
# return semantic_map -> [H, W]
semantic_map = np.zeros(label.shape[:-1])
for index, info in enumerate(label_info):
color = label_info[info]
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
semantic_map[class_map] = index
# semantic_map.append(class_map)
# semantic_map = np.stack(semantic_map, axis=-1)
return semantic_map
def one_hot_it_v11(label, label_info):
# return semantic_map -> [H, W]
semantic_map = np.zeros(label.shape[:-1])
# from 0 to 11, and 11 means void
class_index = 0
for index, info in enumerate(label_info):
color = label_info[info][:3]
class_11 = label_info[info][3]
if class_11 == 1:
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
# semantic_map[class_map] = index
semantic_map[class_map] = class_index
class_index += 1
else:
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
semantic_map[class_map] = 11
return semantic_map
def one_hot_it_v11_dice(label, label_info):
# return semantic_map -> [H, W, class_num]
semantic_map = []
void = np.zeros(label.shape[:2])
for index, info in enumerate(label_info):
color = label_info[info][:3]
class_11 = label_info[info][3]
if class_11 == 1:
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
# semantic_map[class_map] = index
semantic_map.append(class_map)
else:
equality = np.equal(label, color)
class_map = np.all(equality, axis=-1)
void[class_map] = 1
semantic_map.append(void)
semantic_map = np.stack(semantic_map, axis=-1).astype(np.float)
return semantic_map
def reverse_one_hot(image):
"""
Transform a 2D array in one-hot format (depth is num_classes),
to a 2D array with only 1 channel, where each pixel value is
the classified class key.
# Arguments
image: The one-hot format image
# Returns
A 2D array with the same width and height as the input, but
with a depth size of 1, where each pixel value is the classified
class key.
"""
# w = image.shape[0]
# h = image.shape[1]
# x = np.zeros([w,h,1])
# for i in range(0, w):
# for j in range(0, h):
# index, value = max(enumerate(image[i, j, :]), key=operator.itemgetter(1))
# x[i, j] = index
image = image.permute(1, 2, 0)
x = torch.argmax(image, dim=-1)
return x
def compute_global_accuracy(pred, label):
pred = pred.flatten()
label = label.flatten()
total = len(label)
count = 0.0
for i in range(total):
if pred[i] == label[i]:
count = count + 1.0
return float(count) / float(total)
def fast_hist(a, b, n):
'''
a and b are predict and mask respectively
n is the number of classes
'''
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)
def per_class_iu(hist):
epsilon = 1e-5
return (np.diag(hist)) / (hist.sum(1) + hist.sum(0) - np.diag(hist) + epsilon)
def cal_miou(miou_list, csv_path):
# return label -> {label_name: [r_value, g_value, b_value, ...}
ann = pd.read_csv(csv_path)
miou_dict = {}
cnt = 0
for iter, row in ann.iterrows():
label_name = row['name']
class_11 = int(row['class_11'])
if class_11 == 1:
miou_dict[label_name] = miou_list[cnt]
cnt += 1
return miou_dict, np.mean(miou_list)
class OHEM_CrossEntroy_Loss(nn.Module):
def __init__(self, threshold, keep_num):
super(OHEM_CrossEntroy_Loss, self).__init__()
self.threshold = threshold
self.keep_num = keep_num
self.loss_function = nn.CrossEntropyLoss(reduction='none')
def forward(self, output, target):
loss = self.loss_function(output, target).view(-1)
loss, loss_index = torch.sort(loss, descending=True)
threshold_in_keep_num = loss[self.keep_num]
if threshold_in_keep_num > self.threshold:
loss = loss[loss>self.threshold]
else:
loss = loss[:self.keep_num]
return torch.mean(loss)
def group_weight(weight_group, module, norm_layer, lr):
group_decay = []
group_no_decay = []
for m in module.modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, (nn.Conv2d, nn.Conv3d)):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, norm_layer) or isinstance(m, nn.GroupNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
assert len(list(module.parameters())) == len(group_decay) + len(group_no_decay)
weight_group.append(dict(params=group_decay, lr=lr))
weight_group.append(dict(params=group_no_decay, weight_decay=.0, lr=lr))
return weight_group
def map_label(label, label_mappign_info):
# re-assign labels to match the format of Cityscapes
label_copy = 255 * np.ones(label.shape, dtype=np.float32)
for k, v in label_mappign_info.items():
label_copy[label == k] = v
return label_copy
#------------------------------------------------------------
#------------------CUSTOM FUNCTIONS--------------------------
#------------------------------------------------------------
def colorLabel(label, palette):
composed = torchvision.transforms.Compose([ToNumpy(), Map2(palette), transforms.ToTensor(), transforms.ToPILImage()])
label = composed(label)
return label
def parameter_flops_count(model, discriminator, input=torch.randn(8, 3, 512, 1024)):
# return the count of discirminator's flops and parameters
flops = FlopCountAnalysis(discriminator, F.softmax(model(input)[0]))
parameters = sum(parameter_count(discriminator).values())
return (flops, parameters)
def save_images(mean, palette, image, predict, label, path_to_save):
#Save an output examples
#image
# image = image[0].clone().detach()
# image = (image.permute(1, 2, 0) + mean).permute(2, 0, 1)
# image = transforms.ToPILImage()(image.to(torch.uint8))
#prediction
predict = torch.tensor(predict.copy(), dtype=torch.uint8)
predict = colorLabel(predict, palette)
# #label from np to Pil Image
# label = torch.tensor(label.copy(), dtype=torch.uint8)
# label = colorLabel(label, palette)
#create the figure
predict.save(path_to_save)
#save the final result
# plt.savefig(path_to_save)
def get_index(i):
"""
Create the index to save the example
"""
return "0"*(3-len(str(i)))+str(i)
def one_hot(label):
# return semantic_map -> [H, W, class_num]
semantic_map = []
n_ignore = 0
for class_index in range(20):
if class_index == 19:
class_index = 255
n_ignore = torch.tensor(label.clone().detach() == class_index, dtype=torch.float32)
else:
mask = label==class_index
semantic_map.append(mask)
semantic_map = torch.tensor(np.stack(semantic_map, axis=-1).astype(np.float32)).permute(2,0,1)
return semantic_map, n_ignore
def create_mask(datasets, mask_path):
# load masks & weights if already available
if os.path.exists(os.path.join(mask_path, "mask_normalized.pt")) and os.path.exists(os.path.join(mask_path, "weighted_vector.pt")):
print("**Existing masks & weights loaded**")
mask_normalized = torch.load(os.path.join(mask_path, "mask_normalized.pt"))
weighted_vector = torch.load(os.path.join(mask_path, "weighted_vector.pt"))
# creates masks & weights and stores them
else:
#per ogni mask crea la versione one hot
print("**Extracting masks & weights**")
if not isinstance(datasets, list):
datasets = [datasets]
train_labels = []
for dataset in datasets:
train_labels += dataset.get_labels()
classes = {"stuff": [0, 1, 2, 3, 4, 5, 8, 9, 10], "things": [6, 7, 11, 12, 13, 14, 15, 16, 17, 18]}
#somma le one hot
(h,w) = train_labels[0].shape
masks = torch.zeros((len(classes["stuff"]) + len(classes["things"]), h, w))
ignore_pixels = torch.zeros(h,w)
for label in tqdm(train_labels):
one_hot_label, n_ignore = one_hot(label)
masks += one_hot_label
ignore_pixels += n_ignore
# creazione weighted vector
weighted_vector = torch.tensor(1) - torch.sum(masks, axis=(-1,-2)) / (masks.shape[1] * masks.shape[2] * len(train_labels) - torch.sum(ignore_pixels))
mask_normalized = torch.nan_to_num(masks / (torch.tensor(len(train_labels)) - (torch.sum(masks[classes["things"]], axis=-3) + ignore_pixels)), nan=0)
mask_normalized[classes["things"]] = torch.ones((h, w))
if not os.path.exists(mask_path):
os.mkdir(mask_path)
torch.save(mask_normalized, os.path.join(mask_path, "mask_normalized.pt"))
torch.save(weighted_vector, os.path.join(mask_path, "weighted_vector.pt"))
# save masks as images if folder "mask_images" does not exists
if not os.path.exists(os.path.join(mask_path, "mask_images")):
os.mkdir(os.path.join(mask_path, "mask_images"))
for i, mask in enumerate(mask_normalized):
save_image(mask, os.path.join(mask_path, "mask_images", f"{i}.png"), format="png")
return mask_normalized, weighted_vector
def stuff_thing_miou(miou_list, stuff, things):
overall_miou = sum(miou_list) / len(miou_list)
stuffs_miou = sum(miou_list[stuff]) / len(stuff)
things_miou = sum(miou_list[things]) / len(things)
return overall_miou, stuffs_miou, things_miou
#------------------------------------------------------------
#------------------CUSTOM TRANSFORMS-------------------------
#------------------------------------------------------------
class Map:
"""
Maps every pixel to the respective object in the dictionary
Input:
mapper: dict, dictionary of the mapping
"""
def __init__(self, mapper):
self.mapper = mapper
def __call__(self, input):
return np.vectorize(self.mapper.__getitem__, otypes=[np.float32])(input)
class Map2:
"""
Maps every pixel to the respective object in the dictionary
Input:
mapper: dict, dictionary of the mapping
"""
def __init__(self, mapper):
self.mapper = mapper
def __call__(self, input):
return np.array([[self.mapper[element] for element in row]for row in input], dtype=np.float32)
class ToTensor:
"""
Convert into a tensor of float32: differently from transforms.ToTensor() this function does not normalize the values in [0,1] and does not swap the dimensions
"""
def __call__(self, input):
return torch.as_tensor(input, dtype=torch.float32)
class ToNumpy:
"""
Convert into a tensor into a numpy array
"""
def __call__(self, input):
return input.numpy()
# Don't know if it will be useful or if we will subtract the mean inside the dataset class
class MeanSubtraction:
def __init__(self, mean):
self.mean = np.array(mean, dtype=np.float32)
def __call__(self, input):
return input - self.mean
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is 0, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception.
"""
def __init__(self, size, seed, padding=0, pad_if_needed=False):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.seed = seed
@staticmethod
def get_params(img, output_size, seed):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
random.seed(seed)
w, h = img.size
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
if self.padding > 0:
img = torchvision.transforms.functional.pad(img, self.padding)
# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = torchvision.transforms.functional.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0))
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = torchvision.transforms.functional.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2)))
i, j, h, w = self.get_params(img, self.size, self.seed)
return torchvision.transforms.functional.crop(img, i, j, h, w)
def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)