This is a tutorial to estimate age compositions from fishery-independent sources (e.g. survey) using classic age-length keys and continuation ratio logits (Berg and Kristensen 2012). These two methods were evaluated in a simulation experiment previously (Correa et al. 2020). Do not hesitate to contact me if you have any question or ideas about how to improve this tutorial.
I use these libraries:
library(ggplot2)
library(FSA)
library(dplyr)
library(maps)
library(mapdata)
library(devtools)
I use simulated data based on the bottom-trawl survey design in the eastern Bering Sea, which can be found here. The data have this structure, and I only select one year (2007) for this example:
head(catch_data)
## YEAR STATIONID LON LAT NUMBER_FISH
## 4538 2007 108 -165.1 54.7 38
## 4539 2007 230 -166.9 55.0 49
## 4540 2007 236 -166.3 55.0 36
## 4541 2007 241 -165.8 55.0 21
## 4542 2007 248 -165.1 55.0 19
## 4543 2007 310 -164.6 55.1 16
head(len_data)
## YEAR STATIONID LON LAT LENGTH FREQUENCY
## 87039 2007 108 -165.1 54.7 17 3
## 87040 2007 108 -165.1 54.7 23 2
## 87041 2007 108 -165.1 54.7 24 2
## 87042 2007 108 -165.1 54.7 26 1
## 87043 2007 108 -165.1 54.7 28 4
## 87044 2007 108 -165.1 54.7 35 3
head(age_data)
## YEAR STATIONID LON LAT LENGTH AGE
## 17264 2007 108 -165.1 54.7 17 1
## 17265 2007 108 -165.1 54.7 23 1
## 17266 2007 108 -165.1 54.7 61 4
## 17267 2007 108 -165.1 54.7 61 4
## 17268 2007 230 -166.9 55.0 53 3
## 17269 2007 230 -166.9 55.0 60 4
catch_data
is the catch data, len_data
is the length subsample data,
and the age_data
is the age subsample data (each row represents a fish
sampled). The columns are:
YEAR
is the sampling yearSTATIONID
is the station name or code where the sample was takenLON
andLAT
are the longitude and latitude of the sampling station, respectivelyNUMBER_FISH
is the number of fish caught in the sampling stationLENGTH
is the fish sizeFREQUENCY
is the fish size frequencyAGE
is the fish age
The sampling stations can be plotted:
par(mar = c(4, 4, 0.5, 0.5))
plot(x = catch_data$LON, y = catch_data$LAT, pch = 19, xlab = 'longitude', ylab = 'latitude')
map(database = 'worldHires', add = TRUE, fill = TRUE, col = 'gray60')
I assume that the sampled area per station is constant over stations. Standardization (e.g. catch/area) would be required if this assumption does not meet for your data.
Before going to the calculations, we should set the age plus group. In this case, I set it to 8:
age_data$AGE = ifelse(test = age_data$AGE >= 8, yes = 8, no = age_data$AGE)
We also need to find the total number of fish sampled per station the length subsample:
len_data = len_data %>%
group_by(YEAR, STATIONID, LON, LAT) %>%
mutate(NUMBER_FISH_SAMPLED = sum(FREQUENCY))
head(len_data)
## # A tibble: 6 x 7
## # Groups: YEAR, STATIONID, LON, LAT [1]
## YEAR STATIONID LON LAT LENGTH FREQUENCY NUMBER_FISH_SAMPLED
## <int> <int> <dbl> <dbl> <int> <int> <int>
## 1 2007 108 -165. 54.7 17 3 38
## 2 2007 108 -165. 54.7 23 2 38
## 3 2007 108 -165. 54.7 24 2 38
## 4 2007 108 -165. 54.7 26 1 38
## 5 2007 108 -165. 54.7 28 4 38
## 6 2007 108 -165. 54.7 35 3 38
Then, we need to calculate the proportion of fish in the length subsample (relative to the total catch) per station:
len_data = left_join(len_data, catch_data, by = c('YEAR', 'STATIONID', 'LON', 'LAT'))
len_data$PROP_SAMPLED = len_data$NUMBER_FISH_SAMPLED/len_data$NUMBER_FISH
Finally, we calculate the numbers-at-length per station:
len_data$NUMBER_AT_LEN = len_data$FREQUENCY/len_data$PROP_SAMPLED
We use the functions in the R package FSA
.
We construct the ALK using the information in the age subsample data. First, calculate the frequency by length and age.
freq_len_age = xtabs(~LENGTH + AGE, data = age_data)
head(freq_len_age)
## AGE
## LENGTH 1 2 3 4 5 6 7 8
## 10 1 0 0 0 0 0 0 0
## 11 4 0 0 0 0 0 0 0
## 12 3 0 0 0 0 0 0 0
## 13 1 0 0 0 0 0 0 0
## 14 10 0 0 0 0 0 0 0
## 15 16 1 0 0 0 0 0 0
If you want to change the size bin, I recommend using the function
lencat
. Then, we calculate proportions (this is the ALK for this
year):
ALK_year = prop.table(freq_len_age, margin=1)
head(round(ALK_year, digits = 2))
## AGE
## LENGTH 1 2 3 4 5 6 7 8
## 10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## 11 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## 12 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## 13 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## 14 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## 15 0.94 0.06 0.00 0.00 0.00 0.00 0.00 0.00
We can plot the ALK:
alkPlot(key = ALK_year, type = "barplot")
First, we calculate the numbers-at-length from all stations:
num_at_len = len_data %>%
group_by(LENGTH) %>%
summarise(NUMBERS = sum(NUMBER_AT_LEN))
Similarly, we calculate the number of fish per size bin in the age subsample:
num_at_len_A = age_data %>%
group_by(LENGTH) %>%
summarise(NUMBERS = n())
Then, we only select lengths with information in the ALK (the age subsample does not normally have age information for all sizes in the length subsample):
num_at_len = num_at_len[num_at_len$LENGTH %in% num_at_len_A$LENGTH, ]
Finally, we use the function alkAgeDist
to calculate the age
composition for this year. See the statistical background in Quinn and
Deriso (1999):
age_comps_alk = alkAgeDist(key = ALK_year, lenA.n = num_at_len_A$NUMBERS, len.n = num_at_len$NUMBERS)
age_comps_alk$type = 'ALK'
age_comps_alk
## age prop se type
## 1 1 0.534321495 0.006423584 ALK
## 2 2 0.104063039 0.006896247 ALK
## 3 3 0.051805725 0.005640747 ALK
## 4 4 0.215700318 0.007399301 ALK
## 5 5 0.057223880 0.005304152 ALK
## 6 6 0.014732579 0.002398039 ALK
## 7 7 0.014183269 0.002084561 ALK
## 8 8 0.007969694 0.001587404 ALK
Final thoughts:
- In some cases, this estimation is perfomed by sampling strata and then extrapolated to the entire survey area.
- Some users take subjective decisions to keep numbers-at-length information for size bins not present in the age subsample.
Here, I use an R function on my GitHub to estimate proportions-at-age based on information in the length subsample. I source the R script:
source("CRLfunction.R")
There are some help comments on that R
script,
we recommend you to check them out before continuing. We pass the
require information to the function estimateAgeCRL
:
prop_age_crl = estimateAgeCRL(AgeSubsample = age_data, LengthSubsample = len_data, FormulaGAM = 'LENGTH + s(LON, LAT)', AgeMin = 1, AgeMax = 8, AgeVariable = 'AGE', TimeVariable = 'YEAR')
This function adds the proportions-at-age to len_data
(merged_data
element of the output list) and also reports the estimated
proportion-at-age separately (prop_age_matrix
element of the output
list).
Then, we multiply the numbers-at-length by the proportions-at-age and sum over ages to estimate the age composition:
age_comps_crl = as.data.frame(t(as.matrix(len_data$NUMBER_AT_LEN)) %*% as.matrix(prop_age_crl$prop_age_matrix)) # numbers-at-age
age_comps_crl = prop.table(x = age_comps_crl) # proportions-at-age
age_comps_crl = reshape2::melt(age_comps_crl) # organize
## No id variables; using all as measure variables
colnames(age_comps_crl) = c('age', 'prop')
age_comps_crl$type = 'CRL'
age_comps_crl
## age prop type
## 1 1 0.535259081 CRL
## 2 2 0.103181746 CRL
## 3 3 0.051818856 CRL
## 4 4 0.210475530 CRL
## 5 5 0.063704520 CRL
## 6 6 0.014478567 CRL
## 7 7 0.012694580 CRL
## 8 8 0.008387121 CRL
We can plot the age compositions estimated by both methods:
age_comps = rbind(age_comps_alk[,c('age', 'prop', 'type')], age_comps_crl)
ggplot(age_comps, aes(x=as.factor(age), y=prop, fill = factor(type))) +
geom_bar(stat = "identity", position='dodge') +
theme_bw() +
xlab('Age') +
ylab('Proportion') +
guides(fill = guide_legend(title="Method"))
Small differences between these two methods are observed. However, Correa et al. (2020) showed that the CRL method is more precise and unbiased than the ALK method, especially when there is spatiotemporal variability in somatic growth in the fish population.
Berg, Casper W., and Kasper Kristensen. 2012. “Spatial Age-Length Key Modelling Using Continuation Ratio Logits.” Fisheries Research 129-130: 119–26. https://doi.org/https://doi.org/10.1016/j.fishres.2012.06.016.
Correa, Giancarlo M., Lorenzo Ciannelli, Lewis A. K. Barnett, Stan Kotwicki, and Claudio Fuentes. 2020. “Improved Estimation of Age Composition by Accounting for Spatiotemporal Variability in Somatic Growth.” Canadian Journal of Fisheries and Aquatic Sciences 77 (11): 1810–21. https://doi.org/10.1139/cjfas-2020-0166.
Quinn, Terrance J., and Richard B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press.