From dbf39ff2c3d003f1c59653fff8d0bbab4102c503 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Mon, 15 Jul 2024 16:34:45 +0200 Subject: [PATCH 1/9] Remove duplicate readme text from docs' index.rst --- docs/source/index.rst | 466 +----------------------------------------- 1 file changed, 1 insertion(+), 465 deletions(-) diff --git a/docs/source/index.rst b/docs/source/index.rst index 7abb1e9e..3bd447c4 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -1,465 +1 @@ -================== -GSTools Quickstart -================== - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/gstools.png - :width: 150px - :align: center - -.. only:: html - - **Get in Touch!** - - |GH-Discussions| |Slack-Swung| |Gitter-GSTools| |Email| |Twitter| - - **Youtube Tutorial on GSTools** - - .. youtube:: qZBJ-AZXq6Q - :width: 100% - - | - -Purpose -======= - -GeoStatTools provides geostatistical tools for various purposes: - -- random field generation, including periodic boundaries -- simple, ordinary, universal and external drift kriging -- conditioned field generation -- incompressible random vector field generation -- (automated) variogram estimation and fitting -- directional variogram estimation and modelling -- data normalization and transformation -- many readily provided and even user-defined covariance models -- metric spatio-temporal modelling -- plotting and exporting routines - - -Installation -============ - -conda ------ - -GSTools can be installed via -`conda `_ on Linux, Mac, and -Windows. -Install the package by typing the following command in a command terminal: - -.. code-block:: none - - conda install gstools - -In case conda forge is not set up for your system yet, see the easy to follow -instructions on `conda forge `_. -Using conda, the parallelized version of GSTools should be installed. - - -pip ---- - -GSTools can be installed via `pip `_ -on Linux, Mac, and Windows. -On Windows you can install `WinPython `_ to get -Python and pip running. -Install the package by typing the following into command in a command terminal: - -.. code-block:: none - - pip install gstools - -To get the latest development version you can install it directly from GitHub: - -.. code-block:: none - - pip install git+git://github.com/GeoStat-Framework/GSTools.git@main - -If something went wrong during installation, try the :code:`-I` `flag from pip `_. - -**Speeding up GSTools by parallelization** - -We provide two possibilities to run GSTools in parallel, often causing a -massive improvement in runtime. In either case, the number of parallel -threads can be set with the global variable `config.NUM_THREADS`. If not set, -all cores are used. -When using conda, the parallel version of GSTools is installed per default. - -***Parallelizing Cython*** - -To enable the OpenMP support in Cython when using pip, you have to provide a C -compiler and OpenMP. Parallel support is controlled by an environment variable -``GSTOOLS_BUILD_PARALLEL``, that can be ``0`` or ``1`` (interpreted as ``0`` -if not present). GSTools then needs to be installed from source: - -.. code-block:: none - - export GSTOOLS_BUILD_PARALLEL=1 - pip install --no-binary=gstools gstools - -Note, that the ``--no-binary=gstools`` option forces pip to not use a wheel -for GSTools. - -For the development version, you can do almost the same: - -.. code-block:: none - - export GSTOOLS_BUILD_PARALLEL=1 - pip install git+git://github.com/GeoStat-Framework/GSTools.git@main - - -***Using GSTools-Core for parallelization and even more speed*** - -You can install the optional dependency `GSTools-Core `_, -which is a re-implementation of the algorithms used in GSTools. The new -package uses the language Rust and it should be faster (in some cases by orders -of magnitude), safer, and it will potentially completely replace the current -standard implementation in Cython. Once the package GSTools-Core is available -on your machine, it will be used by default. In case you want to switch back to -the Cython implementation, you can set -:code:`gstools.config.USE_GSTOOLS_CORE=False` in your code. This also works at -runtime. You can install the optional dependency e.g. by - -.. code-block:: none - - pip install gstools[rust] - -or by manually installing the package - -.. code-block:: none - - pip install gstools-core - -GSTools-Core will automatically run in parallel, without having to use provide -OpenMP or a local C compiler. - - -Citation -======== - -If you are using GSTools in your publication please cite our paper: - - Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022. - -You can cite the Zenodo code publication of GSTools by: - - Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628 - -If you want to cite a specific version, have a look at the `Zenodo site `__. - - -Tutorials and Examples -====================== - -The documentation also includes some `tutorials `__, -showing the most important use cases of GSTools, which are - -- `Random Field Generation `__ -- `The Covariance Model `__ -- `Variogram Estimation `__ -- `Random Vector Field Generation `__ -- `Kriging `__ -- `Conditioned random field generation `__ -- `Field transformations `__ -- `Geographic Coordinates `__ -- `Spatio-Temporal Modelling `__ -- `Normalizing Data `__ -- `Miscellaneous examples `__ - - -Spatial Random Field Generation -=============================== - -The core of this library is the generation of spatial random fields. -These fields are generated using the randomisation method, described by -`Heße et al. 2014 `_. - - -Examples --------- - -Gaussian Covariance Model -^^^^^^^^^^^^^^^^^^^^^^^^^ - -This is an example of how to generate a 2 dimensional spatial random field (:any:`SRF`) -with a :any:`Gaussian` covariance model. - -.. code-block:: python - - import gstools as gs - # structured field with a size 100x100 and a grid-size of 1x1 - x = y = range(100) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF(model) - srf((x, y), mesh_type='structured') - srf.plot() - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/gau_field.png - :width: 400px - :align: center - -GSTools also provides support for `geographic coordinates `_. -This works perfectly well with `cartopy `_. - -.. code-block:: python - - import matplotlib.pyplot as plt - import cartopy.crs as ccrs - import gstools as gs - # define a structured field by latitude and longitude - lat = lon = range(-80, 81) - model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE) - srf = gs.SRF(model, seed=12345) - field = srf.structured((lat, lon)) - # Orthographic plotting with cartopy - ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) - cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) - ax.coastlines() - ax.set_global() - plt.colorbar(cont) - -.. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_globe.png - :width: 400px - :align: center - -A similar example but for a three dimensional field is exported to a -`VTK `__ file, which can be visualized with -`ParaView `_ or -`PyVista `__ in Python: - -.. code-block:: python - - import gstools as gs - # structured field with a size 100x100x100 and a grid-size of 1x1x1 - x = y = z = range(100) - model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) - srf = gs.SRF(model) - srf((x, y, z), mesh_type='structured') - srf.vtk_export('3d_field') # Save to a VTK file for ParaView - - mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python - mesh.contour(isosurfaces=8).plot() - -.. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_pyvista.png - :width: 400px - :align: center - - -Estimating and fitting variograms -================================= - -The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. - -All covariance models can be used to fit given variogram data by a simple interface. - - -Examples --------- - -This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance -model again. - -.. code-block:: python - - import numpy as np - import gstools as gs - # generate a synthetic field with an exponential model - x = np.random.RandomState(19970221).rand(1000) * 100. - y = np.random.RandomState(20011012).rand(1000) * 100. - model = gs.Exponential(dim=2, var=2, len_scale=8) - srf = gs.SRF(model, mean=0, seed=19970221) - field = srf((x, y)) - # estimate the variogram of the field - bin_center, gamma = gs.vario_estimate((x, y), field) - # fit the variogram with a stable model. (no nugget fitted) - fit_model = gs.Stable(dim=2) - fit_model.fit_variogram(bin_center, gamma, nugget=False) - # output - ax = fit_model.plot(x_max=max(bin_center)) - ax.scatter(bin_center, gamma) - print(fit_model) - -Which gives: - -.. code-block:: python - - Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GeoStat-Framework.github.io/master/img/GS_vario_est.png - :width: 400px - :align: center - - -Kriging and Conditioned Random Fields -===================================== - -An important part of geostatistics is Kriging and conditioning spatial random -fields to measurements. With conditioned random fields, an ensemble of field realizations -with their variability depending on the proximity of the measurements can be generated. - - -Example -------- - -For better visualization, we will condition a 1d field to a few "measurements", -generate 100 realizations and plot them: - -.. code-block:: python - - import numpy as np - import matplotlib.pyplot as plt - import gstools as gs - - # conditions - cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] - cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] - - # conditioned spatial random field class - model = gs.Gaussian(dim=1, var=0.5, len_scale=2) - krige = gs.krige.Ordinary(model, cond_pos, cond_val) - cond_srf = gs.CondSRF(krige) - # same output positions for all ensemble members - grid_pos = np.linspace(0.0, 15.0, 151) - cond_srf.set_pos(grid_pos) - - # seeded ensemble generation - seed = gs.random.MasterRNG(20170519) - for i in range(100): - field = cond_srf(seed=seed(), store=f"field_{i}") - plt.plot(grid_pos, field, color="k", alpha=0.1) - plt.scatter(cond_pos, cond_val, color="k") - plt.show() - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/cond_ens.png - :width: 600px - :align: center - - -User defined covariance models -============================== - -One of the core-features of GSTools is the powerful -:any:`CovModel` -class, which allows to easy define covariance models by the user. - - -Example -------- - -Here we re-implement the Gaussian covariance model by defining just the -`correlation `_ function, -which takes a non-dimensional distance :class:`h = r/l` - -.. code-block:: python - - import numpy as np - import gstools as gs - # use CovModel as the base-class - class Gau(gs.CovModel): - def cor(self, h): - return np.exp(-h**2) - -And that's it! With :class:`Gau` you now have a fully working covariance model, -which you could use for field generation or variogram fitting as shown above. - - -Incompressible Vector Field Generation -====================================== - -Using the original `Kraichnan method `_, incompressible random -spatial vector fields can be generated. - - -Example -------- - -.. code-block:: python - - import numpy as np - import gstools as gs - x = np.arange(100) - y = np.arange(100) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF(model, generator='VectorField', seed=19841203) - srf((x, y), mesh_type='structured') - srf.plot() - -yielding - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/vec_srf_tut_gau.png - :width: 600px - :align: center - - -VTK/PyVista Export -================== - -After you have created a field, you may want to save it to file, so we provide -a handy `VTK `_ export routine using the :class:`.vtk_export()` or you could -create a VTK/PyVista dataset for use in Python with to :class:`.to_pyvista()` method: - -.. code-block:: python - - import gstools as gs - x = y = range(100) - model = gs.Gaussian(dim=2, var=1, len_scale=10) - srf = gs.SRF(model) - srf((x, y), mesh_type='structured') - srf.vtk_export("field") # Saves to a VTK file - mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory - mesh.plot() - -Which gives a RectilinearGrid VTK file :file:`field.vtr` or creates a PyVista mesh -in memory for immediate 3D plotting in Python. - -.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/pyvista_export.png - :width: 600px - :align: center - - -Requirements -============ - -- `NumPy >= 1.20.0 `_ -- `SciPy >= 1.1.0 `_ -- `hankel >= 1.0.0 `_ -- `emcee >= 3.0.0 `_ -- `pyevtk >= 1.1.1 `_ -- `meshio >= 5.1.0 `_ - - -Optional --------- - -- `GSTools-Core >= 0.2.0 `_ -- `matplotlib `_ -- `pyvista `_ - - -Contact -------- - -You can contact us via `info@geostat-framework.org `_. - - -License -======= - -`LGPLv3 `_ - - -.. |GH-Discussions| image:: https://img.shields.io/badge/GitHub-Discussions-f6f8fa?logo=github&style=flat - :alt: GH-Discussions - :target: https://github.com/GeoStat-Framework/GSTools/discussions -.. |Slack-Swung| image:: https://img.shields.io/badge/Swung-Slack-4A154B?style=flat&logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABmJLR0QA%2FwD%2FAP%2BgvaeTAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAAB3RJTUUH5AYaFSENGSa5qgAABmZJREFUSMeFlltsVNcVhr%2B1z5m7Zzy%2BxaBwcQrGQOpgCAkKtSBQIqJepKhPBULpQ6sKBVWVKqXtSy%2BR0qYXqa2qRmlDCzjBEZGKUCK1TWqlNiGIEKDQBtf4Fki4OIxnxrex53LOXn2YwbjEtOvlHG3tvX%2Btf%2B21%2Fl%2BYJ1QVEbn1vwLYBWwCVgG1lW0ZoA%2FoAQ6LSP%2BdZ%2BeGzAMiIqK%2Bem0GpxNYVeBj3j2b4NCfM2QnfAAaa11al4fZuCZK24owQJ9v%2BbLryIVbd9wVSNUaEWNVtQPYfXHmAD0T32ZJeBM1Q8d0zzMDUpMwAFgLJU%2BxClURw9NfqedLWxMAHSKyR1WNiNhPAM0B6c%2FbdPORTLuOeUMSNkmMBHgyeo32bwwRDMh8bDM%2BZVl0j6uvPrdYknFnSESWzwUzt%2BkyVlUHx7zh5j%2BmPkXBjosjLkWdominiMQ%2BoiEZxuq8OFRXGXJ5K5%2Fde5nha8VlqjooIlZVBcBUiqeqemjGppd1ptfhSpS8pmmN7GVf4whPNY4Di9m%2BMcR03nK3sBbCQeFbv7gBsExVOyp3l6nz1VtjcM4fTK3Uok5IXtPsrHuPevcBXk8d4dWPX6I%2BsIB9wf1s%2B2Y%2FVbFynUIBIeDeplIECiXl5Iv3kbLogogRgbWukfNumT%2FnlYszBxj3hwXg0cQvqXcfYNu5tVyYPE%2B1G8dXn%2BfW72fH49U8sSlOPGr4SccoF4cKs3WzFrY%2BFCMUNmz%2Ba0aeWR1l15JwJ7DaVPpk1YnJ7xIxtQRNjDXRvTx%2F9ef0Tl0g6SYQhAlvmkH%2Fgv74qUaiTSG8ewJ0%2FGgRK5aG8Cts5ouWDa1RxoDRovK9i9MAq1S12QA7b5ROUdBxBIeQ1ACG49m%2FEXPis7Qk3ChHbx6Qw1dgXVeWB7uyDOctP%2Fx6w2zdrIVIyFCyiq8wXlJOZzyAXQbY%2FGGhC8EAilJ%2BVg7ufxU6IAHeSvewfQEadiDuCr%2B6NE1LU4hwUFAF1xFGRkvEjVDlgiPwVqoEsNkAq0ZKp3EIYrFM2xGm7Uc8u%2FzXjHkTmHIHoCiDM73E3IIsDCtRV3gn7QHQ0hTCt0ooKLw%2FWCAM1AcNISOcHSsBrDRAbc7eQMQBFFciHM18kaZIMz3r%2F0HO5mazytsiw%2FmTtCYiGGCkQlltwkEVjMDVmyUA6oIGR%2BDGjAWoM3f2giHAhH%2BFI5nPsDrWxqWNE9S4tUz5k1S7cQ5df4k9S6qY9JRipXtr4w5WQYH0eHkWrqxy8FTn3AvpmFmIqj%2B76EiQjNfHH1JNWFKc3vABj9V9npw%2FRXfmBNsaoTRnRAQDAgqqMJr1KBWUtUmHaR8WRgzAqAH6FgYexqd4R2Yuns5wcLSFK4U36bj%2FdbbUbGdoZoCi3uS%2Bqtt73TlNWygpqXGfZTGXnKesrwkA9BmgZ0noMZT5R0tQ4hzLfo4rhS46W%2F%2BCAn3T7%2BhDySiWMl2RkHArP8dAesKjPixYVbbUBwB6DHB4QWADIamuHPtkhE0t3ZP7ANhe9zgvXP2dfK0pymRJmQLiEYNW6mEVljYGuDzlkwwaHq51AQ4bERkAetvjP2XCT6H480AJeZsB4N7QYt7OnuSROtRXJV2wNNS4qIJvlbUtERJxhxcv5%2FlNWwygV0QGyzKBv%2FP%2ByFfZXf%2ButoR3UuXcS95mKNgxSjpN3qZZFHwUgFPjx5n2c9wo9ktrtcOZtMeWB2NEw4b2thivPLuIS1M%2BAzmrTy4O4ys7Zv1B5fsnVdWCr7PxYf7vej73ex2YeU1VVY9nu7ShG63vRo%2Fe%2FK1%2B518FbXkjo3OjO1XU2LFRzRZ9VdWDczFQ1VsCOHgpd1G%2FcG6jHrj2vPbn%2BjVdHNfr%2BRH92eXva2MPuvxEQpe%2BHdEnzm%2FQf4%2BrRo%2BldMUbGd393oS2dWU0cDSlw1OequrALVG9Q8rLsquqg2OlzLL2Myu1N5eShgB4CjEnSMSJYrX8Oj0t8UH7NMnX0iSDwmhBWRl3tKs9IcmgGRSRZqtqzFwpL4uWWKvWiMjyZKC24%2F1HbsrLn95Pwk3gCpS0yIw%2Fg6clPC2RLc3QmzvJupoARQsvrItxZmtSkkFz6E6Q%2F2m3PFta44jbCaw%2BO3GK7uybnJs8xfXC1fLYCdTz9NIfsCS0mYVhAHp9ZYdr5J%2F%2F127dxUA2AzuBzRUDWVfZlq4YyG6gs9ImdzWQ%2FwFNRlgCFdG5bAAAAABJRU5ErkJggg%3D%3D - :alt: Slack-Swung - :target: https://swung.slack.com/messages/gstools -.. |Gitter-GSTools| image:: https://img.shields.io/badge/Gitter-GeoStat--Framework-ed1965?logo=gitter&style=flat - :alt: Gitter-GSTools - :target: https://gitter.im/GeoStat-Framework/GSTools -.. |Email| image:: https://img.shields.io/badge/Email-GeoStat--Framework-468a88?style=flat&logo= - :alt: Email - :target: mailto:info@geostat-framework.org -.. |Twitter| image:: https://img.shields.io/twitter/follow/GSFramework?style=social - :alt: Twitter Follow - :target: https://twitter.com/GSFramework +.. mdinclude:: ../../README.md From 9a5bb7f9f8677b989b923b257a072eccf9e6bee5 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:00:57 +0200 Subject: [PATCH 2/9] Turn cython-lint back on & lint cython --- .github/workflows/main.yml | 6 +++--- src/gstools/field/summator.pyx | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index a3031e6a..7d1c7d01 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -48,9 +48,9 @@ jobs: run: | python -m pylint src/gstools/ - #- name: cython-lint check - #run: | - #cython-lint src/gstools/ + - name: cython-lint check + run: | + cython-lint src/gstools/ build_wheels: name: wheels for ${{ matrix.os }} diff --git a/src/gstools/field/summator.pyx b/src/gstools/field/summator.pyx index 416024f1..ce79ab7a 100755 --- a/src/gstools/field/summator.pyx +++ b/src/gstools/field/summator.pyx @@ -10,7 +10,7 @@ if OPENMP: cimport openmp cimport numpy as np -from libc.math cimport cos, pi, sin, sqrt +from libc.math cimport cos, sin def set_num_threads(num_threads): From 9d7cb4fc115929b21cb7f9d1eaad1efe84da7ae4 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:07:48 +0200 Subject: [PATCH 3/9] Move coveralls job to source_check --- .github/workflows/main.yml | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 7d1c7d01..d15ff771 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -31,6 +31,7 @@ jobs: run: | python -m pip install --upgrade pip pip install -v --editable .[lint] + pip install build "coveralls>=3.0.0" - name: black check run: | @@ -52,6 +53,10 @@ jobs: run: | cython-lint src/gstools/ + - name: coveralls check + run: | + python -m coveralls --service=github + build_wheels: name: wheels for ${{ matrix.os }} runs-on: ${{ matrix.os }} @@ -110,7 +115,6 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install build "coveralls>=3.0.0" - name: Install GSTools env: @@ -124,7 +128,6 @@ jobs: run: | pip install "numpy${{ matrix.ver.np }}" "scipy${{ matrix.ver.sp }}" python -m pytest --cov gstools --cov-report term-missing -v tests/ - python -m coveralls --service=github - name: Build sdist run: | From a1453605a2d7269b56dc75a046002715add134a2 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:11:28 +0200 Subject: [PATCH 4/9] Add github secrets to coveralls job --- .github/workflows/main.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index d15ff771..e9dec0c9 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -56,6 +56,8 @@ jobs: - name: coveralls check run: | python -m coveralls --service=github + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} build_wheels: name: wheels for ${{ matrix.os }} @@ -123,8 +125,6 @@ jobs: pip install -v --editable .[test] - name: Run tests - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} run: | pip install "numpy${{ matrix.ver.np }}" "scipy${{ matrix.ver.sp }}" python -m pytest --cov gstools --cov-report term-missing -v tests/ From aa68287f8717e0733c8c7030ceb06ec8890fb690 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:17:15 +0200 Subject: [PATCH 5/9] Fix missing install build --- .github/workflows/main.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index e9dec0c9..3c2db078 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -31,7 +31,7 @@ jobs: run: | python -m pip install --upgrade pip pip install -v --editable .[lint] - pip install build "coveralls>=3.0.0" + pip install "coveralls>=3.0.0" - name: black check run: | @@ -117,6 +117,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip + pip install build - name: Install GSTools env: From 4ebef245ff0b9a016d47898dab2d3bd690b5bf30 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:52:32 +0200 Subject: [PATCH 6/9] Undo accidental change --- docs/source/index.rst | 466 +++++++++++++++++++++++++++++++++++++++++- 1 file changed, 465 insertions(+), 1 deletion(-) diff --git a/docs/source/index.rst b/docs/source/index.rst index 3bd447c4..7abb1e9e 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -1 +1,465 @@ -.. mdinclude:: ../../README.md +================== +GSTools Quickstart +================== + +.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/gstools.png + :width: 150px + :align: center + +.. only:: html + + **Get in Touch!** + + |GH-Discussions| |Slack-Swung| |Gitter-GSTools| |Email| |Twitter| + + **Youtube Tutorial on GSTools** + + .. youtube:: qZBJ-AZXq6Q + :width: 100% + + | + +Purpose +======= + +GeoStatTools provides geostatistical tools for various purposes: + +- random field generation, including periodic boundaries +- simple, ordinary, universal and external drift kriging +- conditioned field generation +- incompressible random vector field generation +- (automated) variogram estimation and fitting +- directional variogram estimation and modelling +- data normalization and transformation +- many readily provided and even user-defined covariance models +- metric spatio-temporal modelling +- plotting and exporting routines + + +Installation +============ + +conda +----- + +GSTools can be installed via +`conda `_ on Linux, Mac, and +Windows. +Install the package by typing the following command in a command terminal: + +.. code-block:: none + + conda install gstools + +In case conda forge is not set up for your system yet, see the easy to follow +instructions on `conda forge `_. +Using conda, the parallelized version of GSTools should be installed. + + +pip +--- + +GSTools can be installed via `pip `_ +on Linux, Mac, and Windows. +On Windows you can install `WinPython `_ to get +Python and pip running. +Install the package by typing the following into command in a command terminal: + +.. code-block:: none + + pip install gstools + +To get the latest development version you can install it directly from GitHub: + +.. code-block:: none + + pip install git+git://github.com/GeoStat-Framework/GSTools.git@main + +If something went wrong during installation, try the :code:`-I` `flag from pip `_. + +**Speeding up GSTools by parallelization** + +We provide two possibilities to run GSTools in parallel, often causing a +massive improvement in runtime. In either case, the number of parallel +threads can be set with the global variable `config.NUM_THREADS`. If not set, +all cores are used. +When using conda, the parallel version of GSTools is installed per default. + +***Parallelizing Cython*** + +To enable the OpenMP support in Cython when using pip, you have to provide a C +compiler and OpenMP. Parallel support is controlled by an environment variable +``GSTOOLS_BUILD_PARALLEL``, that can be ``0`` or ``1`` (interpreted as ``0`` +if not present). GSTools then needs to be installed from source: + +.. code-block:: none + + export GSTOOLS_BUILD_PARALLEL=1 + pip install --no-binary=gstools gstools + +Note, that the ``--no-binary=gstools`` option forces pip to not use a wheel +for GSTools. + +For the development version, you can do almost the same: + +.. code-block:: none + + export GSTOOLS_BUILD_PARALLEL=1 + pip install git+git://github.com/GeoStat-Framework/GSTools.git@main + + +***Using GSTools-Core for parallelization and even more speed*** + +You can install the optional dependency `GSTools-Core `_, +which is a re-implementation of the algorithms used in GSTools. The new +package uses the language Rust and it should be faster (in some cases by orders +of magnitude), safer, and it will potentially completely replace the current +standard implementation in Cython. Once the package GSTools-Core is available +on your machine, it will be used by default. In case you want to switch back to +the Cython implementation, you can set +:code:`gstools.config.USE_GSTOOLS_CORE=False` in your code. This also works at +runtime. You can install the optional dependency e.g. by + +.. code-block:: none + + pip install gstools[rust] + +or by manually installing the package + +.. code-block:: none + + pip install gstools-core + +GSTools-Core will automatically run in parallel, without having to use provide +OpenMP or a local C compiler. + + +Citation +======== + +If you are using GSTools in your publication please cite our paper: + + Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022. + +You can cite the Zenodo code publication of GSTools by: + + Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628 + +If you want to cite a specific version, have a look at the `Zenodo site `__. + + +Tutorials and Examples +====================== + +The documentation also includes some `tutorials `__, +showing the most important use cases of GSTools, which are + +- `Random Field Generation `__ +- `The Covariance Model `__ +- `Variogram Estimation `__ +- `Random Vector Field Generation `__ +- `Kriging `__ +- `Conditioned random field generation `__ +- `Field transformations `__ +- `Geographic Coordinates `__ +- `Spatio-Temporal Modelling `__ +- `Normalizing Data `__ +- `Miscellaneous examples `__ + + +Spatial Random Field Generation +=============================== + +The core of this library is the generation of spatial random fields. +These fields are generated using the randomisation method, described by +`Heße et al. 2014 `_. + + +Examples +-------- + +Gaussian Covariance Model +^^^^^^^^^^^^^^^^^^^^^^^^^ + +This is an example of how to generate a 2 dimensional spatial random field (:any:`SRF`) +with a :any:`Gaussian` covariance model. + +.. code-block:: python + + import gstools as gs + # structured field with a size 100x100 and a grid-size of 1x1 + x = y = range(100) + model = gs.Gaussian(dim=2, var=1, len_scale=10) + srf = gs.SRF(model) + srf((x, y), mesh_type='structured') + srf.plot() + +.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/gau_field.png + :width: 400px + :align: center + +GSTools also provides support for `geographic coordinates `_. +This works perfectly well with `cartopy `_. + +.. code-block:: python + + import matplotlib.pyplot as plt + import cartopy.crs as ccrs + import gstools as gs + # define a structured field by latitude and longitude + lat = lon = range(-80, 81) + model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE) + srf = gs.SRF(model, seed=12345) + field = srf.structured((lat, lon)) + # Orthographic plotting with cartopy + ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) + cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) + ax.coastlines() + ax.set_global() + plt.colorbar(cont) + +.. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_globe.png + :width: 400px + :align: center + +A similar example but for a three dimensional field is exported to a +`VTK `__ file, which can be visualized with +`ParaView `_ or +`PyVista `__ in Python: + +.. code-block:: python + + import gstools as gs + # structured field with a size 100x100x100 and a grid-size of 1x1x1 + x = y = z = range(100) + model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) + srf = gs.SRF(model) + srf((x, y, z), mesh_type='structured') + srf.vtk_export('3d_field') # Save to a VTK file for ParaView + + mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python + mesh.contour(isosurfaces=8).plot() + +.. image:: https://github.com/GeoStat-Framework/GeoStat-Framework.github.io/raw/master/img/GS_pyvista.png + :width: 400px + :align: center + + +Estimating and fitting variograms +================================= + +The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. + +All covariance models can be used to fit given variogram data by a simple interface. + + +Examples +-------- + +This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance +model again. + +.. code-block:: python + + import numpy as np + import gstools as gs + # generate a synthetic field with an exponential model + x = np.random.RandomState(19970221).rand(1000) * 100. + y = np.random.RandomState(20011012).rand(1000) * 100. + model = gs.Exponential(dim=2, var=2, len_scale=8) + srf = gs.SRF(model, mean=0, seed=19970221) + field = srf((x, y)) + # estimate the variogram of the field + bin_center, gamma = gs.vario_estimate((x, y), field) + # fit the variogram with a stable model. (no nugget fitted) + fit_model = gs.Stable(dim=2) + fit_model.fit_variogram(bin_center, gamma, nugget=False) + # output + ax = fit_model.plot(x_max=max(bin_center)) + ax.scatter(bin_center, gamma) + print(fit_model) + +Which gives: + +.. code-block:: python + + Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) + +.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GeoStat-Framework.github.io/master/img/GS_vario_est.png + :width: 400px + :align: center + + +Kriging and Conditioned Random Fields +===================================== + +An important part of geostatistics is Kriging and conditioning spatial random +fields to measurements. With conditioned random fields, an ensemble of field realizations +with their variability depending on the proximity of the measurements can be generated. + + +Example +------- + +For better visualization, we will condition a 1d field to a few "measurements", +generate 100 realizations and plot them: + +.. code-block:: python + + import numpy as np + import matplotlib.pyplot as plt + import gstools as gs + + # conditions + cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] + cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] + + # conditioned spatial random field class + model = gs.Gaussian(dim=1, var=0.5, len_scale=2) + krige = gs.krige.Ordinary(model, cond_pos, cond_val) + cond_srf = gs.CondSRF(krige) + # same output positions for all ensemble members + grid_pos = np.linspace(0.0, 15.0, 151) + cond_srf.set_pos(grid_pos) + + # seeded ensemble generation + seed = gs.random.MasterRNG(20170519) + for i in range(100): + field = cond_srf(seed=seed(), store=f"field_{i}") + plt.plot(grid_pos, field, color="k", alpha=0.1) + plt.scatter(cond_pos, cond_val, color="k") + plt.show() + +.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/cond_ens.png + :width: 600px + :align: center + + +User defined covariance models +============================== + +One of the core-features of GSTools is the powerful +:any:`CovModel` +class, which allows to easy define covariance models by the user. + + +Example +------- + +Here we re-implement the Gaussian covariance model by defining just the +`correlation `_ function, +which takes a non-dimensional distance :class:`h = r/l` + +.. code-block:: python + + import numpy as np + import gstools as gs + # use CovModel as the base-class + class Gau(gs.CovModel): + def cor(self, h): + return np.exp(-h**2) + +And that's it! With :class:`Gau` you now have a fully working covariance model, +which you could use for field generation or variogram fitting as shown above. + + +Incompressible Vector Field Generation +====================================== + +Using the original `Kraichnan method `_, incompressible random +spatial vector fields can be generated. + + +Example +------- + +.. code-block:: python + + import numpy as np + import gstools as gs + x = np.arange(100) + y = np.arange(100) + model = gs.Gaussian(dim=2, var=1, len_scale=10) + srf = gs.SRF(model, generator='VectorField', seed=19841203) + srf((x, y), mesh_type='structured') + srf.plot() + +yielding + +.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/vec_srf_tut_gau.png + :width: 600px + :align: center + + +VTK/PyVista Export +================== + +After you have created a field, you may want to save it to file, so we provide +a handy `VTK `_ export routine using the :class:`.vtk_export()` or you could +create a VTK/PyVista dataset for use in Python with to :class:`.to_pyvista()` method: + +.. code-block:: python + + import gstools as gs + x = y = range(100) + model = gs.Gaussian(dim=2, var=1, len_scale=10) + srf = gs.SRF(model) + srf((x, y), mesh_type='structured') + srf.vtk_export("field") # Saves to a VTK file + mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory + mesh.plot() + +Which gives a RectilinearGrid VTK file :file:`field.vtr` or creates a PyVista mesh +in memory for immediate 3D plotting in Python. + +.. image:: https://raw.githubusercontent.com/GeoStat-Framework/GSTools/main/docs/source/pics/pyvista_export.png + :width: 600px + :align: center + + +Requirements +============ + +- `NumPy >= 1.20.0 `_ +- `SciPy >= 1.1.0 `_ +- `hankel >= 1.0.0 `_ +- `emcee >= 3.0.0 `_ +- `pyevtk >= 1.1.1 `_ +- `meshio >= 5.1.0 `_ + + +Optional +-------- + +- `GSTools-Core >= 0.2.0 `_ +- `matplotlib `_ +- `pyvista `_ + + +Contact +------- + +You can contact us via `info@geostat-framework.org `_. + + +License +======= + +`LGPLv3 `_ + + +.. |GH-Discussions| image:: https://img.shields.io/badge/GitHub-Discussions-f6f8fa?logo=github&style=flat + :alt: GH-Discussions + :target: https://github.com/GeoStat-Framework/GSTools/discussions +.. |Slack-Swung| image:: https://img.shields.io/badge/Swung-Slack-4A154B?style=flat&logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABmJLR0QA%2FwD%2FAP%2BgvaeTAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAAB3RJTUUH5AYaFSENGSa5qgAABmZJREFUSMeFlltsVNcVhr%2B1z5m7Zzy%2BxaBwcQrGQOpgCAkKtSBQIqJepKhPBULpQ6sKBVWVKqXtSy%2BR0qYXqa2qRmlDCzjBEZGKUCK1TWqlNiGIEKDQBtf4Fki4OIxnxrex53LOXn2YwbjEtOvlHG3tvX%2Btf%2B21%2Fl%2BYJ1QVEbn1vwLYBWwCVgG1lW0ZoA%2FoAQ6LSP%2BdZ%2BeGzAMiIqK%2Bem0GpxNYVeBj3j2b4NCfM2QnfAAaa11al4fZuCZK24owQJ9v%2BbLryIVbd9wVSNUaEWNVtQPYfXHmAD0T32ZJeBM1Q8d0zzMDUpMwAFgLJU%2BxClURw9NfqedLWxMAHSKyR1WNiNhPAM0B6c%2FbdPORTLuOeUMSNkmMBHgyeo32bwwRDMh8bDM%2BZVl0j6uvPrdYknFnSESWzwUzt%2BkyVlUHx7zh5j%2BmPkXBjosjLkWdominiMQ%2BoiEZxuq8OFRXGXJ5K5%2Fde5nha8VlqjooIlZVBcBUiqeqemjGppd1ptfhSpS8pmmN7GVf4whPNY4Di9m%2BMcR03nK3sBbCQeFbv7gBsExVOyp3l6nz1VtjcM4fTK3Uok5IXtPsrHuPevcBXk8d4dWPX6I%2BsIB9wf1s%2B2Y%2FVbFynUIBIeDeplIECiXl5Iv3kbLogogRgbWukfNumT%2FnlYszBxj3hwXg0cQvqXcfYNu5tVyYPE%2B1G8dXn%2BfW72fH49U8sSlOPGr4SccoF4cKs3WzFrY%2BFCMUNmz%2Ba0aeWR1l15JwJ7DaVPpk1YnJ7xIxtQRNjDXRvTx%2F9ef0Tl0g6SYQhAlvmkH%2Fgv74qUaiTSG8ewJ0%2FGgRK5aG8Cts5ouWDa1RxoDRovK9i9MAq1S12QA7b5ROUdBxBIeQ1ACG49m%2FEXPis7Qk3ChHbx6Qw1dgXVeWB7uyDOctP%2Fx6w2zdrIVIyFCyiq8wXlJOZzyAXQbY%2FGGhC8EAilJ%2BVg7ufxU6IAHeSvewfQEadiDuCr%2B6NE1LU4hwUFAF1xFGRkvEjVDlgiPwVqoEsNkAq0ZKp3EIYrFM2xGm7Uc8u%2FzXjHkTmHIHoCiDM73E3IIsDCtRV3gn7QHQ0hTCt0ooKLw%2FWCAM1AcNISOcHSsBrDRAbc7eQMQBFFciHM18kaZIMz3r%2F0HO5mazytsiw%2FmTtCYiGGCkQlltwkEVjMDVmyUA6oIGR%2BDGjAWoM3f2giHAhH%2BFI5nPsDrWxqWNE9S4tUz5k1S7cQ5df4k9S6qY9JRipXtr4w5WQYH0eHkWrqxy8FTn3AvpmFmIqj%2B76EiQjNfHH1JNWFKc3vABj9V9npw%2FRXfmBNsaoTRnRAQDAgqqMJr1KBWUtUmHaR8WRgzAqAH6FgYexqd4R2Yuns5wcLSFK4U36bj%2FdbbUbGdoZoCi3uS%2Bqtt73TlNWygpqXGfZTGXnKesrwkA9BmgZ0noMZT5R0tQ4hzLfo4rhS46W%2F%2BCAn3T7%2BhDySiWMl2RkHArP8dAesKjPixYVbbUBwB6DHB4QWADIamuHPtkhE0t3ZP7ANhe9zgvXP2dfK0pymRJmQLiEYNW6mEVljYGuDzlkwwaHq51AQ4bERkAetvjP2XCT6H480AJeZsB4N7QYt7OnuSROtRXJV2wNNS4qIJvlbUtERJxhxcv5%2FlNWwygV0QGyzKBv%2FP%2ByFfZXf%2ButoR3UuXcS95mKNgxSjpN3qZZFHwUgFPjx5n2c9wo9ktrtcOZtMeWB2NEw4b2thivPLuIS1M%2BAzmrTy4O4ys7Zv1B5fsnVdWCr7PxYf7vej73ex2YeU1VVY9nu7ShG63vRo%2Fe%2FK1%2B518FbXkjo3OjO1XU2LFRzRZ9VdWDczFQ1VsCOHgpd1G%2FcG6jHrj2vPbn%2BjVdHNfr%2BRH92eXva2MPuvxEQpe%2BHdEnzm%2FQf4%2BrRo%2BldMUbGd393oS2dWU0cDSlw1OequrALVG9Q8rLsquqg2OlzLL2Myu1N5eShgB4CjEnSMSJYrX8Oj0t8UH7NMnX0iSDwmhBWRl3tKs9IcmgGRSRZqtqzFwpL4uWWKvWiMjyZKC24%2F1HbsrLn95Pwk3gCpS0yIw%2Fg6clPC2RLc3QmzvJupoARQsvrItxZmtSkkFz6E6Q%2F2m3PFta44jbCaw%2BO3GK7uybnJs8xfXC1fLYCdTz9NIfsCS0mYVhAHp9ZYdr5J%2F%2F127dxUA2AzuBzRUDWVfZlq4YyG6gs9ImdzWQ%2FwFNRlgCFdG5bAAAAABJRU5ErkJggg%3D%3D + :alt: Slack-Swung + :target: https://swung.slack.com/messages/gstools +.. |Gitter-GSTools| image:: https://img.shields.io/badge/Gitter-GeoStat--Framework-ed1965?logo=gitter&style=flat + :alt: Gitter-GSTools + :target: https://gitter.im/GeoStat-Framework/GSTools +.. |Email| image:: https://img.shields.io/badge/Email-GeoStat--Framework-468a88?style=flat&logo= + :alt: Email + :target: mailto:info@geostat-framework.org +.. |Twitter| image:: https://img.shields.io/twitter/follow/GSFramework?style=social + :alt: Twitter Follow + :target: https://twitter.com/GSFramework From a2b44fec32ca902e8180a3b03b28d0322c705745 Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:53:00 +0200 Subject: [PATCH 7/9] Perform actual coverage check before running coveralls --- .github/workflows/main.yml | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 3c2db078..190224f1 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -30,7 +30,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install -v --editable .[lint] + pip install -v --editable .[lint, test] pip install "coveralls>=3.0.0" - name: black check @@ -55,6 +55,7 @@ jobs: - name: coveralls check run: | + python -m pytest --cov gstools --cov-report term-missing -v tests/ python -m coveralls --service=github env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} @@ -128,7 +129,7 @@ jobs: - name: Run tests run: | pip install "numpy${{ matrix.ver.np }}" "scipy${{ matrix.ver.sp }}" - python -m pytest --cov gstools --cov-report term-missing -v tests/ + python -m pytest -v tests/ - name: Build sdist run: | From 4037fa95cb27d2d75e16058b72724b583fe2971e Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 10:59:28 +0200 Subject: [PATCH 8/9] Fix syntax --- .github/workflows/main.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 190224f1..9f0d496e 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -30,7 +30,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install -v --editable .[lint, test] + pip install -v --editable '.[lint, test]' pip install "coveralls>=3.0.0" - name: black check From b355260da3225765fd98b86566bef3fdc28e658c Mon Sep 17 00:00:00 2001 From: LSchueler Date: Thu, 18 Jul 2024 13:46:39 +0200 Subject: [PATCH 9/9] Remove problematic whitespace --- .github/workflows/main.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 9f0d496e..9fc071d5 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -30,7 +30,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install -v --editable '.[lint, test]' + pip install -v --editable '.[lint,test]' pip install "coveralls>=3.0.0" - name: black check