-
Notifications
You must be signed in to change notification settings - Fork 0
/
objectdetector.py
85 lines (68 loc) · 2.42 KB
/
objectdetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import cv2
import numpy as np
import textgen
# textpart
img_size = None
# cvpart
print("Loading YOLO ...")
net = cv2.dnn.readNet("yolov3.cfg", "yolov3.weights")
# net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i-1] for i in net.getUnconnectedOutLayers()]
print("YOLO loaded")
# object detection
def detect_objects(img_path, img_show=False, img_highlight=False):
print("Detecting objects ...")
objs = []
cv2.destroyAllWindows()
img = cv2.imread(img_path)
# img=cv2.resize(img,(500,500))
height, width, channels = img.shape
img_size = (width, height) # for text
blob = cv2.dnn.blobFromImage(
img, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0]*width)
center_y = int(detection[1]*height)
w = int(detection[2]*width)
h = int(detection[3]*height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
colors = np.random.uniform(0, 255, size=(len(classes), 3))
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
objs.append(dict(cls=label, x=x, y=y, w=w, h=h))
# rectagle highlighting
if img_highlight:
color = colors[class_ids[i]]
cv2.rectangle(img, (x, y), (x+w, y+h), color, 2)
cv2.putText(img, label, (x, y-5),
cv2.FONT_HERSHEY_SIMPLEX, 1/2, color, 2)
print("Object detection complete")
if img_show:
cv2.imshow("Image", img)
cv2.waitKey(1000)
return objs
def detectandgenerate(img_path):
objs = detect_objects(img_path)
gentext = textgen.getText(objs)
return gentext