Skip to content

Latest commit

 

History

History
107 lines (77 loc) · 3.53 KB

update_2023.org

File metadata and controls

107 lines (77 loc) · 3.53 KB

Table of contents

Introduction

This document shows changes between the release_2022 and release_2023 freshwater discharge product.

Changes to the code and manuscript can be seen at https://github.com/GEUS-Glaciology-and-Climate/freshwater/compare/release_2022…release_2023

Summary of differences

  • Added 2022 RACMO data
  • Added 2022 MAR data
  • Updated MAR data from 3.12 to 3.13
  • Updated BedMachine from v4 to v5
  • Updated ArcticDEM from v3.0 to v4.1

release_2022 vs release_2023 discharge

Extract time series

mamba activate freshwater_user

python ./discharge.py --base="/home/kdm/data/Mankoff_2020/water/release_2022" --roi="-51.50,66.93 -51.21,66.74 -49.44,66.91 -49.84,67.18" -d -u > ./dat/r2022_roi.csv

python ./discharge.py --base="/home/kdm/data/Mankoff_2020/water/release_2023" --roi="-51.50,66.93 -51.21,66.74 -49.44,66.91 -49.84,67.18" -d -u > ./dat/r2023_roi.csv

Graphics

df_r2022 = pd.read_csv('./dat/r2022_roi.csv', index_col=0)
df_r2023 = pd.read_csv('./dat/r2023_roi.csv', index_col=0)

df_r2022 = df_r2022[['MAR_ice','RACMO_ice']]\
    .rename(columns={'MAR_ice':'MAR_ice_2022',
                     'RACMO_ice':'RACMO_ice_2022'})

df_r2023 = df_r2023[['MAR_ice','RACMO_ice']]\
    .rename(columns={'MAR_ice':'MAR_ice_2023',
                     'RACMO_ice':'RACMO_ice_2023'})

df = df_r2022.merge(df_r2023, left_index=True, right_index=True)

p = df.loc['2012-04-01':'2012-11-15']\
      .rolling(5)\
      .mean()\
      .plot(drawstyle='steps')

./figs_tmp/14cac59c0cfaacfa5fcacdf5901b79d47e8870a5.png

r2023

df = pd.read_csv('./dat/r2023_roi.csv', index_col=0)
df[['MAR_ice','RACMO_ice']]\
    .loc['2012-04-01':'2012-11-15']\
    .rolling(5)\
    .mean()\
    .plot(drawstyle='steps')
Note
graphics appear roughly the same, but the x-axis has nearly doubled.

Compare using upstream basins

Recreate using ‘old’ data

df = pd.read_csv('./dat/r2022_roi.csv', index_col=0)
p = df.loc['2012-04-01':'2012-11-15']\
      .rolling(5)\
      .mean()\
      .plot(drawstyle='steps')

./figs_tmp/8e2135ab547341c90acc76e179fe45f340dc432b.png

Recreate using ‘new’ data

df = pd.read_csv('./dat/r2023_roi.csv', index_col=0)
p = df.loc['2012-04-01':'2012-11-15']\
      .rolling(5)\
      .mean()\
      .plot(drawstyle='steps')

./figs_tmp/398db525122cda3d47e02e93fa4d1fcf60b6b0d9.png