You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, I've tried to test BERTscore, BLEURT and Prism embedding metrics from Colab, however got a stack or errors - the errors for BLEURT and Prism come from the same Docker source: DockerException: Error while fetching server API version: ('Connection aborted.', FileNotFoundError(2, 'No such file or directory')),
while BERTscore seems to have troubles with the dependencies: No module named 'transformers.models.beit.configuration_beit'
Before trying the metrics, I did the heavy install, imported the library and initialized predictions and references objects:
!git clone https://github.com/GEM-benchmark/GEM-metrics
!pip install -r /content/GEM-metrics/requirements.txt -r /content/GEM-metrics/requirements-heavy.txt
import gem_metrics
list_of_predictions = ["The apple is tasty"]
list_of_references = [["The apple is tasty"]]
preds = gem_metrics.texts.Predictions(list_of_predictions)
refs = gem_metrics.texts.References(list_of_references)```
result = gem_metrics.compute(preds, refs, metrics_list=['bertscore']) # same for 'bleurt' and 'prism'
The errors stack for BERTscore is as follows:
[I 220919 13:17:01 __init__:170] Computing BERTScore for None.
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--distilbert-base-uncased/snapshots/043235d6088ecd3dd5fb5ca3592b6913fd516027/config.json
Model config DistilBertConfig {
"_name_or_path": "distilbert-base-uncased",
"activation": "gelu",
"architectures": [
"DistilBertForMaskedLM"
],
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"tie_weights_": true,
"transformers_version": "4.22.1",
"vocab_size": 30522
}
loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--distilbert-base-uncased/snapshots/043235d6088ecd3dd5fb5ca3592b6913fd516027/vocab.txt
loading file added_tokens.json from cache at None
loading file special_tokens_map.json from cache at None
loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--distilbert-base-uncased/snapshots/043235d6088ecd3dd5fb5ca3592b6913fd516027/tokenizer_config.json
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--distilbert-base-uncased/snapshots/043235d6088ecd3dd5fb5ca3592b6913fd516027/config.json
Model config DistilBertConfig {
"_name_or_path": "distilbert-base-uncased",
"activation": "gelu",
"architectures": [
"DistilBertForMaskedLM"
],
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"tie_weights_": true,
"transformers_version": "4.22.1",
"vocab_size": 30522
}
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--distilbert-base-uncased/snapshots/043235d6088ecd3dd5fb5ca3592b6913fd516027/config.json
Model config DistilBertConfig {
"_name_or_path": "distilbert-base-uncased",
"activation": "gelu",
"architectures": [
"DistilBertForMaskedLM"
],
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"tie_weights_": true,
"transformers_version": "4.22.1",
"vocab_size": 30522
}
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/transformers/utils/import_utils.py in _get_module(self, module_name)
18 frames
[/usr/lib/python3.7/importlib/__init__.py](https://localhost:8080/#) in import_module(name, package)
126 level += 1
--> 127 return _bootstrap._gcd_import(name[level:], package, level)
128
/usr/lib/python3.7/importlib/_bootstrap.py in _gcd_import(name, package, level)
/usr/lib/python3.7/importlib/_bootstrap.py in _find_and_load(name, import_)
/usr/lib/python3.7/importlib/_bootstrap.py in _find_and_load_unlocked(name, import_)
ModuleNotFoundError: No module named 'transformers.models.beit.configuration_beit'
The above exception was the direct cause of the following exception:
RuntimeError Traceback (most recent call last)
[<ipython-input-42-399945309db8>](https://localhost:8080/#) in <module>
----> 1 result = gem_metrics.compute(preds, refs, metrics_list=['bertscore']) # , 'bertscore', 'bleurt'
2 result
[/usr/local/lib/python3.7/dist-packages/gem_metrics/__init__.py](https://localhost:8080/#) in compute(outs, refs, srcs, metrics_dict, metrics_list, cache, dataset_name)
170 logger.info(f"Computing {metric_class.__name__} for {outs.filename}...")
171 metric = metric_class()
--> 172 result = metric.compute_cached(cache, outs, refs)
173 values.update(result)
174 if cache is not None:
[/usr/local/lib/python3.7/dist-packages/gem_metrics/metric.py](https://localhost:8080/#) in compute_cached(self, cache, predictions, *args)
80 new_arg.assign_ids_and_unscramble(to_compute)
81 new_arg_list.append(new_arg)
---> 82 computed_scores = self.compute(cache, *new_arg_list)
83 else:
84 logger.info(
[/usr/local/lib/python3.7/dist-packages/gem_metrics/bertscore.py](https://localhost:8080/#) in compute(self, cache, predictions, references)
31 # Use language-appropriate scorer.
32 score = self.metric.compute(
---> 33 lang=predictions.language.alpha_2, model_type="distilbert-base-uncased"
34 )
35
[/usr/local/lib/python3.7/dist-packages/datasets/metric.py](https://localhost:8080/#) in compute(self, predictions, references, **kwargs)
436 except pa.ArrowInvalid:
437 raise ValueError(
--> 438 f"Predictions and/or references don't match the expected format.\n"
439 f"Expected format: {self.features},\n"
440 f"Input predictions: {predictions},\n"
[~/.cache/huggingface/modules/datasets_modules/metrics/bertscore/23c058b03785b916e9331e97245dd43a377e84fb477ebdb444aff40629e99732/bertscore.py](https://localhost:8080/#) in _compute(self, predictions, references, lang, model_type, num_layers, verbose, idf, device, batch_size, nthreads, all_layers, rescale_with_baseline, baseline_path, use_fast_tokenizer)
174 lang=lang,
175 rescale_with_baseline=rescale_with_baseline,
--> 176 baseline_path=baseline_path,
177 )
178
[/usr/local/lib/python3.7/dist-packages/bert_score/scorer.py](https://localhost:8080/#) in __init__(self, model_type, num_layers, batch_size, nthreads, all_layers, idf, idf_sents, device, lang, rescale_with_baseline, baseline_path)
99
100 self._tokenizer = get_tokenizer(self.model_type)
--> 101 self._model = get_model(self.model_type, self.num_layers, self.all_layers)
102 self._model.to(self.device)
103
[/usr/local/lib/python3.7/dist-packages/bert_score/utils.py](https://localhost:8080/#) in get_model(model_type, num_layers, all_layers)
203 model = T5EncoderModel.from_pretrained(model_type)
204 else:
--> 205 model = AutoModel.from_pretrained(model_type)
206 model.eval()
207
/usr/local/lib/python3.7/dist-packages/transformers/models/auto/auto_factory.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
/usr/local/lib/python3.7/dist-packages/transformers/models/auto/auto_factory.py in keys(self)
/usr/local/lib/python3.7/dist-packages/transformers/models/auto/auto_factory.py in <listcomp>(.0)
/usr/local/lib/python3.7/dist-packages/transformers/models/auto/auto_factory.py in _load_attr_from_module(self, model_type, attr)
/usr/local/lib/python3.7/dist-packages/transformers/models/auto/auto_factory.py in getattribute_from_module(module, attr)
/usr/local/lib/python3.7/dist-packages/transformers/utils/import_utils.py in __getattr__(self, name)
/usr/local/lib/python3.7/dist-packages/transformers/utils/import_utils.py in _get_module(self, module_name)
RuntimeError: Failed to import transformers.models.beit.configuration_beit because of the following error (look up to see its traceback):
No module named 'transformers.models.beit.configuration_beit'
The text was updated successfully, but these errors were encountered:
I've just tested BERTscore via HuggingFace datasets API, torchmetrics API and initial implementation, getting the same error. Therefore, BERTscore issue is not for GEM-metrics team.
The issue with the Docker for BLEURT and Prism, hovewer, is.
@asnota I'm sorry for the delay. I'm afraid any metrics that require the use of a docker container just won't work with Colab. @danieldeutsch can you please confirm?
Hello, I've tried to test BERTscore, BLEURT and Prism embedding metrics from Colab, however got a stack or errors - the errors for BLEURT and Prism come from the same Docker source:
DockerException: Error while fetching server API version: ('Connection aborted.', FileNotFoundError(2, 'No such file or directory'))
,while BERTscore seems to have troubles with the dependencies:
No module named 'transformers.models.beit.configuration_beit'
Before trying the metrics, I did the heavy install, imported the library and initialized predictions and references objects:
The errors stack for BERTscore is as follows:
The text was updated successfully, but these errors were encountered: