diff --git a/docs/en/usage.md b/docs/en/usage.md
index 6ec4534..a0c3c11 100644
--- a/docs/en/usage.md
+++ b/docs/en/usage.md
@@ -1217,4 +1217,909 @@ for file in gdf_list:
file.close()
```
-The `readDiag` is an actively developing package with continuous updates. New features will be added and demonstrated through this notebook.
+## Radiance
+
+This section presents the `readDiag` functions that have been created and modified for accessing the radiance diagnostic files generated by GSI.
+
+### The `read_diag` Class
+
+The `read_diag` class has not been altered. The tools in this class are used as examples below to visualize the diagnostic data of radiance.
+
+### The `plot_diag` Class
+
+In the `plot_diag` class, the following functions have been created or modified for reading and analyzing radiance data:
+
+1. `plot(self, varName, varType, param, minVal=None, maxVal=None, mask=None, area=None, **kwargs)`: The `plot` function generates a figure for the variable `varName` (e.g., `amsua`), `varType` (e.g., `n19` (satellite)), and `param`, which can include options such as: `param="obs"` for observation value, `param="omf"` for observation minus background, or `param="oma"` for observation minus analysis. Optional variables `minVal` and `maxVal` have been added to set the color range of the colormap. Data can also be masked using the variables `iuse` and `idqc`, which indicate whether the radiance data was assimilated (`iuse>=1 & idqc=0`) or rejected (`iuse>=1 & idqc!=0`), or whether the data is monitored (`iuse=-1`). Additionally, the `mask` parameter allows specification of the channel `nchan` (channel number). Below is an example executed for `varName="amsua"`, `varType="n19"`, `param="obs"`, and `mask="(nchan==14) & (iuse >= 1 & idqc == 0)"`.
+
+
+
+
+2. `time_series_radi(self, varName=None, varType=None, mask=None, dateIni=None, dateFin=None, nHour="06", vminOMA=None, vmaxOMA=None, vminSTD=0.0, vmaxSTD=14.0, channel=None, Clean=None)`: The `time_series_radi` function generates figures showing the temporal variation of the means and standard deviations of the OmF and OmA parameters of radiance data. This function can be used in three scenarios: when `channel` is a single channel number (4 figures are generated using only the observations from the specified channel), when `channel` is a list of channels (6 *Hovmöller* diagrams are created considering only the listed channels), and when `channel` is `None` (6 *Hovmöller* diagrams are generated considering all available channels (1 to 15)).
+
+ The input parameters for the function are presented below.
+
+ | Parameter | Example | Description |
+ | :--- | :---: | :--- |
+ | `self` | `['/home/user/diag_amsua_n19_01.2024020100']` | List of all full paths (`path/filename`) for each time in the time series. |
+ | `varName` | `amsua` | Variable name |
+ | `varType` | `n19` | Variable type |
+ | `dateIni` | `2024020100` | Start date of the time series |
+ | `dateFin` | `2024020218` | End date of the time series |
+ | `nHour` | `6` | Time interval in hours between each file in the `self` list |
+ | `vminOMA` | `-2.0` | Minimum y-scale value for OmF and OmA |
+ | `vmaxOMA` | `2.0` | Maximum y-scale value for OmF and OmA |
+ | `vminSTD` | `0.0` | Minimum y-scale value for standard deviation |
+ | `vmaxSTD` | `14.0` | Maximum y-scale value for standard deviation |
+ | `channel` | `14` | Channel value(s) for the time series. Options: numeric value representing the channel, e.g., `14` for a single channel; `[6, 9, 10, 13, 14]` for a list of specific channels; `None` to plot all channels. |
+ | `Clean` | `True` or `False` | If `True`, after generating and saving the figure, the figure window is reset (`plt.clf()`) or closed (`plt.close()`); if `False`, this step is skipped, and the figure remains available for viewing with `plt.show()`. |
+
+3. `statcount(self, varName=None, varType=None, noiqc=False, dateIni=None, dateFin=None, nHour="06", channel=None, figTS=False, figMap=False, **kwargs)`: The `statcount` function generates two types of figures. If `figTS` is `True`, a time series figure showing the number of assimilated, rejected, and monitored data points is generated. If `figMap` is `True`, a temporal sequence of figures indicating the geographical location of the assimilated, rejected, and monitored observations is produced. In this function, when the data is radiance, the `channel` variable is assigned the specific channel number, and for conventional data, the `channel` variable should be `None`. When `channel = channel number`, the monitored data (`iuse=-1`) is subclassified into two groups: monitored observations that would be assimilated (monitored-assimilated) since `idqc=0`, and monitored observations that would be rejected (monitored-rejected) since `idqc!=0`. Thus, for radiance data, if `figMap=True`, two figures can be generated—one showing the geographical location of the assimilated and rejected observations and another showing the location of the monitored-assimilated and monitored-rejected observations. The `noiqc` variable is a parameter from the GSI name list used for classifying conventional data and can take values `True` or `False` (it does not affect radiance classification). Below is an example executed for `varName="amsua"`, `varType="n19"`, `noiqc=False`, `dateIni="2024020100"`, `dateFin="2024020218"`, `nHour="06"`, `channel=6`, `figTS=True`, `figMap=True`.
+
+`figMap=True`
+
+
+
+
+
+
+
+`figTS=True`
+
+
+
+
+Throughout this notebook, examples with code snippets are provided to illustrate the use of the above-listed functions.
+
+### Using the `read_diag` Class
+
+#### Required Libraries
+
+To start using `readDiag`, first load the necessary libraries:
+
+* `gsidiag`: the library containing the `read_diag` and `plot_diag` classes;
+* `pandas`: the library that provides the tabular data structures used by `readDiag`;
+* `matplotlib`: the library used for creating figures;
+* `datetime`: the library used for manipulating dates;
+* `datasources`: the library used to analyze and store information from a file containing observation data;
+* `os`: the library that provides various operating system interfaces.
+
+The `%matplotlib inline` directive is a Jupyter magic command that allows figures to be displayed inline without needing to use `plt.show()` each time. If you are using `readDiag` within a Python script, you can omit this directive and use `plt.show()` as needed.
+
+```python linenums="1"
+import gsidiag as gd
+
+import pandas as pd
+import matplotlib.pyplot as plt
+from datetime import datetime, timedelta
+from gsidiag.datasources import getVarInfo
+
+import os
+
+%matplotlib inline
+```
+
+#### Main Variables
+
+The table below lists the default values of the variables used throughout this tutorial. Note that the variables have different types, and some can be declared as `None`.
+
+| Variables | | Values | Type |
+| :---: |:---:| :--- | :--- |
+| `DIRdiag` | = | `/pesq/share/das/dist/joao.gerd/EXP18/GSI/dataout` | string |
+|`varName` | = | `amsua` | string |
+|`varType` | = | `n19` | **string** |
+|`dateIni` | = | `2024021000` | string |
+|`dateFin` | = | `2024021018` | string |
+|`nHour` | = | `6` | string |
+|`vminOMA` | = | `-2.0` | float |
+|`vmaxOMA` | = | `2.0` | float |
+|`vminSTD` | = | `0.0` | float |
+|`vmaxSTD` | = | `14.0` | float |
+|`channel` | = | `6` | integer or `None` |
+
+The following cell sets these variables according to the values in the table above. Additionally, it adjusts the dates to form the path and filenames of the GSI diagnostic files:
+
+!!! tip "Tip"
+
+ To test the `readDiag` functionalities related to radiances, download the following files into the `data` directory of your `readDiag` installation:
+
+ ```bash linenums="1"
+ cd readDiag/data
+
+ wget https://ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19_amsua.tar.gz
+ wget https://ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19_conv_0201.tar.gz
+ wget https://ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19_conv_0202.tar.gz
+
+ tar -zxvf SMNAexp19_amsua.tar.gz
+ tar -zxvf SMNAexp19_conv_0201.tar.gz
+ tar -zxvf SMNAexp19_conv_0202.tar.gz
+ ```
+
+=== "Command"
+
+ ```python linenums="1"
+ DIRdiag = os.path.join(os.getcwd(), '../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout')
+
+ varName = 'amsua'
+ varType = 'n19'
+ dateIni = '2024020100'
+ dateFin = '2024020218'
+ nHour = '6'
+ vminOMA = -2.0
+ vmaxOMA = 2.0
+ vminSTD = 0.0
+ vmaxSTD = 14.0
+ channel = 6
+
+ datei = datetime.strptime(str(dateIni), '%Y%m%d%H')
+ datef = datetime.strptime(str(dateFin), '%Y%m%d%H')
+ dates = [dates.strftime('%Y%m%d%H') for dates in pd.date_range(datei, datef,freq='6H').tolist()]
+
+ print(dates)
+ ```
+
+
+=== "Result"
+
+ ```
+ ['2024020100', '2024020106', '2024020112', '2024020118', '2024020200', '2024020206', '2024020212', '2024020218']
+ ```
+
+Generating the `paths` and `pathsc` variables that will contain the full paths (including filenames) of the diagnostic files for the first (OmF) and last (OmA) outer loops of the radiance data:
+
+=== "Command"
+
+ ```python linenums="1"
+ paths, pathsc = [], []
+
+ OuterL = '01'
+ [paths.append(DIRdiag + '/' + dt + '/diag_' + varName +'_'+ varType +'_' + OuterL + '.' + dt) for dt in dates]
+
+ OuterLc = '03'
+ [pathsc.append(DIRdiag + '/' + dt + '/diag_' + varName +'_'+ varType +'_' + OuterLc + '.' + dt) for dt in dates]
+
+ print(paths)
+ print('')
+ print(pathsc)
+ ```
+
+=== "Result"
+
+ ```
+ ['/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020100/diag_amsua_n19_01.2024020100', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020106/diag_amsua_n19_01.2024020106', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020112/diag_amsua_n19_01.2024020112', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020118/diag_amsua_n19_01.2024020118', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020200/diag_amsua_n19_01.2024020200', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020206/diag_amsua_n19_01.2024020206', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020212/diag_amsua_n19_01.2024020212', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020218/diag_amsua_n19_01.2024020218']
+
+ ['/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020100/diag_amsua_n19_03.2024020100', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020106/diag_amsua_n19_03.2024020106', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020112/diag_amsua_n19_03.2024020112', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020118/diag_amsua_n19_03.2024020118', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020200/diag_amsua_n19_03.2024020200', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020206/diag_amsua_n19_03.2024020206', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020212/diag_amsua_n19_03.2024020212', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020218/diag_amsua_n19_03.2024020218']
+ ```
+
+#### Reading Diagnostic Files
+
+Reading the radiance diagnostic files using the `read_diag()` function from the `readDiag` package. In the following code snippet, notice that the `read_diag()` function is used within a loop that iterates over all the files in the `paths` and `pathsc` lists defined in the previous step. At the end of the loop, the `gdf_list` list is generated, which will contain all the files read by `readDiag`:
+
+=== "Command"
+
+ ```python linenums="1"
+ read = True
+
+ if read:
+ gdf_list = []
+ print('')
+
+ print('Please wait, the estimated total time to read the files is ' +
+ str(int((float(len(paths))*20)/60)) + ' minutes and ' +
+ str(int((float(len(paths))*20)%60)) + ' seconds.')
+
+ print('')
+
+ for path, pathc in zip(paths, pathsc):
+ print('Reading ' + path)
+
+ gdf = gd.read_diag(path, pathc)
+
+ gdf_list.append(gdf)
+
+ print('Done!')
+ ```
+
+=== "Output"
+
+ ```
+ Please wait, the estimated total time to read the files is 2 minutes and 40 seconds.
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020100/diag_amsua_n19_01.2024020100
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020106/diag_amsua_n19_01.2024020106
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020112/diag_amsua_n19_01.2024020112
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020118/diag_amsua_n19_01.2024020118
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020200/diag_amsua_n19_01.2024020200
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020206/diag_amsua_n19_01.2024020206
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020212/diag_amsua_n19_01.2024020212
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020218/diag_amsua_n19_01.2024020218
+
+ >>> GSI DIAG <<<
+
+ Done!
+ ```
+
+The `gdf_list` variable is a list of dataframes containing the data from each diagnostic file. To work with a single time point, simply specify the list with a fixed index, for example: `gdf_list[0]`:
+
+=== "Command"
+
+ ```python linenums="1"
+ gdf_list
+ ```
+
+=== "Output"
+
+ ```
+ [,
+ ,
+ ,
+ ,
+ ,
+ ,
+ ,
+ ]
+ ```
+
+By setting `tidx = 0`, we obtain the first object in the `gdf_list`:
+
+=== "Command"
+
+ ```python linenums="1"
+ tidx = 0
+ gdf_list[tidx]
+ ```
+
+=== "Output"
+
+ ```
+
+ ```
+
+#### Retrieving File Information
+
+Use the `pfileinfo()` function to get information such as the sensor type and its corresponding satellite (`n19`) contained within the file:
+
+=== "Command"
+
+ ```python linenums="1"
+ gdf_list[tidx].pfileinfo()
+ ```
+
+=== "Output"
+
+ ```
+ Variable Name : amsua
+ └── kx => n19
+ ```
+
+In addition to the `pfileinfo()` method, other methods and functions can also be used to access information about the opened files. To get a list of available methods and functions, type `gdf_list[tidx].` and press `` twice on your keyboard:
+
+```python linenums="1"
+>>> gdf_list[tidx].
+gdf_list[tidx].close( gdf_list[tidx].obsInfo gdf_list[tidx].pfileinfo( gdf_list[tidx].zlevs
+gdf_list[tidx].tocsv( gdf_list[tidx].overview( gdf_list[tidx].varNames
+gdf_list[tidx].obs
+```
+
+To obtain a dictionary with all the information about the variables and types contained in the file, use the `obsInfo` method:
+
+=== "Command"
+
+ ```python linenums="1"
+ gdf_list[tidx].obsInfo
+ ```
+
+=== "Output"
+
+ ```
+ {'amsua': lat lon elev nchan time iuse idqc \
+ SatId points
+ n19 0 -87.446198 6.644900 2647.032227 1.0 2.885000 1.0 8.0
+ 1 -87.446198 6.644900 2647.032227 2.0 2.885000 1.0 8.0
+ 2 -87.446198 6.644900 2647.032227 3.0 2.885000 1.0 8.0
+ 3 -87.446198 6.644900 2647.032227 4.0 2.885000 1.0 8.0
+ 4 -87.446198 6.644900 2647.032227 5.0 2.885000 1.0 8.0
+ ... ... ... ... ... ... ... ...
+ 137830 56.754601 336.250885 0.055578 11.0 -1.522778 1.0 0.0
+ 137831 56.754601 336.250885 0.055578 12.0 -1.522778 1.0 0.0
+ 137832 56.754601 336.250885 0.055578 13.0 -1.522778 1.0 0.0
+ 137833 56.754601 336.250885 0.055578 14.0 -1.522778 4.0 0.0
+ 137834 56.754601 336.250885 0.055578 15.0 -1.522778 1.0 51.0
+
+ inverr oer obs omf omf_nobc emiss \
+ SatId points
+ n19 0 0.000000 NaN 187.330002 2.591137 -7.817700 0.813564
+ 1 0.000000 NaN 189.190002 4.114823 -3.598879 0.801515
+ 2 0.000000 NaN 211.460007 -1.666820 2.795111 0.791668
+ 3 0.000000 NaN 225.820007 0.495127 -0.318058 0.791438
+ 4 0.000000 NaN 229.089996 0.241357 -1.846274 0.790830
+ ... ... ... ... ... ... ...
+ 137830 2.499857 0.400023 219.949997 0.632804 -0.609745 0.856901
+ 137831 1.817697 0.550150 219.039993 0.488474 -0.474023 0.856901
+ 137832 1.248405 0.801043 217.449997 -1.116789 -1.843264 0.856901
+ 137833 0.248456 4.025372 219.979996 -0.762485 -0.762485 0.856901
+ 137834 0.000000 NaN 229.039993 -23.291994 -41.154434 0.950000
+
+ oma oma_nobc imp dfs \
+ SatId points
+ n19 0 2.803686 -7.640147 NaN NaN
+ 1 4.388880 -3.414203 NaN NaN
+ 2 -1.364057 3.049402 NaN NaN
+ 3 0.594996 -0.230114 NaN NaN
+ 4 0.297319 -1.806047 NaN NaN
+ ... ... ... ... ...
+ 137830 0.451392 -0.792813 -0.491687 -0.286979
+ 137831 0.409210 -0.554484 -0.129336 -0.070378
+ 137832 -0.789088 -1.543222 -0.779681 -0.456870
+ 137833 0.452604 0.452604 -0.093540 -0.230162
+ 137834 -23.673958 -41.430882 NaN NaN
+
+ geometry
+ SatId points
+ n19 0 POINT (6.64490 -87.44620)
+ 1 POINT (6.64490 -87.44620)
+ 2 POINT (6.64490 -87.44620)
+ 3 POINT (6.64490 -87.44620)
+ 4 POINT (6.64490 -87.44620)
+ ... ...
+ 137830 POINT (-23.74915 56.75460)
+ 137831 POINT (-23.74915 56.75460)
+ 137832 POINT (-23.74915 56.75460)
+ 137833 POINT (-23.74915 56.75460)
+ 137834 POINT (-23.74915 56.75460)
+
+ [137835 rows x 18 columns]}
+ ```
+
+To access a specific variable (e.g., `amsua`), do the following:
+
+=== "Command"
+
+ ```python linenums="1"
+ print('Variable: ', varName)
+
+ gdf_list[tidx].obsInfo[varName]
+ ```
+
+=== "Output"
+
+ Variable: amsua
+
+ | | |lat |lon |elev |nchan|time |iuse|idqc | inverr|oer |obs |omf |omf_nobc |emiss |oma |oma_nobc |imp |dfs |geometry |
+ | | | | | | | | | | | | | | | | | | | | |
+ |**SatId**| **points**| | | | | | | | | | | | | | | | | | |
+ | n19| 0| -87.446198| 6.644900| 2647.032227| 1.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 187.330002| 2.591137| -7.817700| 0.813564| 2.803686| -7.640147| NaN| NaN| POINT (6.64490 -87.44620)|
+ | | 1| -87.446198| 6.644900| 2647.032227| 2.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 189.190002| 4.114823| -3.598879| 0.801515| 4.388880| -3.414203| NaN| NaN| POINT (6.64490 -87.44620)|
+ | | 2| -87.446198| 6.644900| 2647.032227| 3.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 211.460007| -1.666820| 2.795111| 0.791668| -1.364057| 3.049402| NaN| NaN| POINT (6.64490 -87.44620)|
+ | | 3| -87.446198| 6.644900| 2647.032227| 4.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 225.820007| 0.495127| -0.318058| 0.791438| 0.594996| -0.230114| NaN| NaN| POINT (6.64490 -87.44620)|
+ |... | | | | | | | | | | | | | | | | | | | |
+ | | 137832| 56.754601| 336.250885| 0.055578| 13.0| -1.522778| 1.0| 0.0| 1.248405| 0.801043| 217.449997| -1.116789| -1.843264| 0.856901| -0.789088| -1.543222| -0.779681| -0.456870| POINT (-23.74915 56.75460)|
+ | | 137833| 56.754601| 336.250885| 0.055578| 14.0| -1.522778| 4.0| 0.0| 0.248456| 4.025372| 219.979996| -0.762485| -0.762485| 0.856901| 0.452604| 0.452604| -0.093540| -0.230162| POINT (-23.74915 56.75460)|
+ | | 137834| 56.754601| 336.250885| 0.055578| 15.0| -1.522778| 1.0| 51.0| 0.000000| NaN| 229.039993| -23.291994| -41.154434| 0.950000| -23.673958| -41.430882| NaN| NaN| POINT (-23.74915 56.75460)|
+
+ 137835 rows × 18 columns
+
+To access a specific variable and type (e.g., `amsua` of type `n19`), do the following:
+
+=== "Command"
+
+ ```python linenums="1"
+ print('Variable: ', varName, ' and Type: ', varType)
+
+ gdf_list[tidx].obsInfo[varName].loc[varType]
+ ```
+
+=== "Output"
+
+ | |lat |lon |elev |nchan|time |iuse|idqc | inverr|oer |obs |omf |omf_nobc |emiss |oma |oma_nobc |imp |dfs |geometry |
+ | | | | | | | | | | | | | | | | | | | |
+ | **points**| | | | | | | | | | | | | | | | | | |
+ | 0| -87.446198| 6.644900| 2647.032227| 1.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 187.330002| 2.591137| -7.817700| 0.813564| 2.803686| -7.640147| NaN| NaN| POINT (6.64490 -87.44620)|
+ | 1| -87.446198| 6.644900| 2647.032227| 2.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 189.190002| 4.114823| -3.598879| 0.801515| 4.388880| -3.414203| NaN| NaN| POINT (6.64490 -87.44620)|
+ | 2| -87.446198| 6.644900| 2647.032227| 3.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 211.460007| -1.666820| 2.795111| 0.791668| -1.364057| 3.049402| NaN| NaN| POINT (6.64490 -87.44620)|
+ | 3| -87.446198| 6.644900| 2647.032227| 4.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 225.820007| 0.495127| -0.318058| 0.791438| 0.594996| -0.230114| NaN| NaN| POINT (6.64490 -87.44620)|
+ |... | | | | | | | | | | | | | | | | | | |
+ | 137832| 56.754601| 336.250885| 0.055578| 13.0| -1.522778| 1.0| 0.0| 1.248405| 0.801043| 217.449997| -1.116789| -1.843264| 0.856901| -0.789088| -1.543222| -0.779681| -0.456870| POINT (-23.74915 56.75460)|
+ | 137833| 56.754601| 336.250885| 0.055578| 14.0| -1.522778| 4.0| 0.0| 0.248456| 4.025372| 219.979996| -0.762485| -0.762485| 0.856901| 0.452604| 0.452604| -0.093540| -0.230162| POINT (-23.74915 56.75460)|
+ | 137834| 56.754601| 336.250885| 0.055578| 15.0| -1.522778| 1.0| 51.0| 0.000000| NaN| 229.039993| -23.291994| -41.154434| 0.950000| -23.673958| -41.430882| NaN| NaN| POINT (-23.74915 56.75460)|
+
+ 137835 rows × 18 columns
+
+To access the observation value, use the `obs` method:
+
+=== "Command"
+
+ ```python linenums="1"
+ print('Variable: ', varName, ' and Type: ', varType)
+
+ gdf_list[tidx].obsInfo[varName].loc[varType].obs
+ ```
+
+=== "Output"
+
+ ```
+ Variable: amsua and Type: n19
+ [13]:
+ points
+ 0 187.330002
+ 1 189.190002
+ 2 211.460007
+ 3 225.820007
+ 4 229.089996
+ ...
+ 137830 219.949997
+ 137831 219.039993
+ 137832 217.449997
+ 137833 219.979996
+ 137834 229.039993
+ Name: obs, Length: 137835, dtype: float32
+ ```
+
+To access the quality control value of the observation in a specific channel, use the `idqc` method with the `mask` instruction in the `query` function:
+
+=== "Command"
+
+ ```python linenums="1"
+ mask = 'nchan == 2'
+ gdf_list[tidx].obsInfo[varName].query(mask).loc[varType].idqc
+ ```
+
+=== "Output"
+
+ ```
+ points
+ 1 8.0
+ 16 8.0
+ 31 51.0
+ 46 51.0
+ 61 51.0
+ ...
+ 137761 51.0
+ 137776 51.0
+ 137791 51.0
+ 137806 51.0
+ 137821 51.0
+ Name: idqc, Length: 9189, dtype: float32
+ ```
+
+### Using the `plot_diag` class
+
+#### Spatial Distribution
+
+Below is an example of using functions from the `plot_diag` class that have been modified or created for radiance data diagnostics, along with commands to generate various types of figures.
+
+Generating a figure with the observation values (`param='obs'`) for the selected variable and type:
+
+=== "Command"
+
+ ```python linenums="1"
+ param = 'obs'
+
+ gd.plot_diag.plot(gdf_list[tidx],
+ varName=varName,
+ varType=varType,
+ param=param,
+ mask="(nchan=="+str(channel)+") & (iuse >= 1 & idqc == 0)",
+ markersize=4.80,
+ legend='true')
+ ```
+
+=== "Output"
+
+ ![png](../imgs/amsua_n19_obs_CH14_2024020100_plot_0.png)
+
+
+#### Histogram
+
+The `pcount()` and `vcount()` functions from the `plot_diag` class can also be used to obtain a histogram with the observation count for the variable. However, in the case of radiance data, since there is only one variable (sensor) and one type (satellite) in the files, both functions generate the same histogram with a single column:
+
+=== "Command"
+
+ ```python linenums="1"
+ gd.plot_diag.pcount(gdf_list[tidx], varName)
+ ```
+
+=== "Output"
+
+ ![png](../imgs/pcount.png)
+
+Use the `vcount()` function from the `plot_diag` class to obtain a histogram with the observation count for all types of variables:
+
+=== "Command"
+
+ ```python linenums="1"
+ gd.plot_diag.vcount(gdf_list[tidx])
+ ```
+
+=== "Output"
+
+ ![png](../imgs/vcount2.png)
+
+
+#### Time Series
+
+Below are the options for figures using the `time_series_radi()` function (new function) included in the `plot_diag` class. Initially, a figure is generated with the parameters already set in this section. Next, figures are presented with the `channel` parameter altered.
+
+Plotting a time series of OmA and OmF for the data from the channel set in the variable definition cell:
+
+=== "Command"
+
+ ```python linenums="1"
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Output"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: 2024-02-01:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:18 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:18 - Channel de radiancia: 6
+
+ =============================================================================================================
+
+ channels = [6]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/ts1.png)
+ ![png](../imgs/ts2.png)
+ ![png](../imgs/ts3.png)
+ ![png](../imgs/ts4.png)
+
+
+In the previous example, the `channel` parameter was set to channel 6. The initial values for vminOMA, vmaxOMA, vminSTD, and vmaxSTD were then adjusted to improve the time series visualization.
+
+=== "Command"
+
+ ```python linenums="1"
+ vminOMA = -0.5
+ vmaxOMA = 0.5
+ vminSTD = 0.0
+ vmaxSTD = 1.0
+
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Output"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: 2024-02-01:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:18 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:18 - Channel de radiancia: 6
+
+ =============================================================================================================
+
+ channels = [6]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/ts5.png)
+ ![png](../imgs/ts6.png)
+ ![png](../imgs/ts7.png)
+ ![png](../imgs/ts8.png)
+
+Now, the `channel` variable is changed to consider more than one channel. The `channel = None` option fetches data for each existing channel in the files and creates a *Hovmoller* diagram with the means, standard deviations, and assimilated data counts for all channels (note that the values on the y-axis identify all channels from 1 to 15). When `channel` is a specific list of channels specified by the user, the *Hovmoller* diagram is constructed only with the channels indicated by the user.
+
+Thus, you can use the `channels
+
+ = None` parameter to consider all channels. Use the same vminOMA, vmaxOMA, vminSTD, and vmaxSTD values for better visualization:
+
+=== "Command"
+
+ ```python linenums="1"
+ channel = None
+
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Output"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: 2024-02-01:00 - All available channels.
+ Preparing data for: 2024-02-01:06 - All available channels.
+ Preparing data for: 2024-02-01:12 - All available channels.
+ Preparing data for: 2024-02-01:18 - All available channels.
+ Preparing data for: 2024-02-02:00 - All available channels.
+ Preparing data for: 2024-02-02:06 - All available channels.
+ Preparing data for: 2024-02-02:12 - All available channels.
+ Preparing data for: 2024-02-02:18 - All available channels.
+
+ =============================================================================================================
+
+ channels = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/hov1.png)
+ ![png](../imgs/hov2.png)
+ ![png](../imgs/hov3.png)
+ ![png](../imgs/hov4.png)
+
+"Considering all channels, that is, `channel = None`:"
+
+=== "Command"
+
+ ```python linenums="1"
+ channel = None
+
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Result"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: Radiance channels2024-02-01:00
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-01:06
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-01:12
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-01:18
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-02:00
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-02:06
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-02:12
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Radiance channels2024-02-02:18
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+
+ =============================================================================================================
+
+ channels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/hov5.png)
+ ![png](../imgs/hov6.png)
+ ![png](../imgs/hov7.png)
+
+##### STATCOUNT
+
+The following are the figure options obtained by the `statcount()` function. The `statcount()` function provides two types of figures: with `figMap=True`, it is possible to generate a sequence of images with the geographical points of the assimilated, rejected, and monitored observations over a period from `dateIni` to `dateFin` with a time interval of `nHour`. Another figure, containing a time series of the number of assimilated, rejected, and monitored data, is generated if `figTS=True`. When the files used are radiance data, the `channel` variable should be assigned the desired channel number (`channel=6`), while if the data analyzed are conventional, the `channel` variable should be set to `None` (`channel=None`).
+
+In radiance data, the classification of data into assimilated, rejected, and monitored is performed considering two types of monitored observations:
+
+1. monitored-assimilated: observations that are monitored, `iuse = -1`, which could be assimilated since `idqc = 0`.
+2. monitored-rejected: observations that are monitored, `iuse = -1`, which could be rejected since `idqc != 0`.
+
+The table below details how the classification of radiance data is performed.
+
+| | idqc | iuse |
+| :--- |:---: | :--- |
+| Assimilated | == 0 | >= 1 |
+| Monitored-assimilated | == 0 | >= -1 and < 1 |
+| Monitored-rejected | != 0 | >= -1 and < 1 |
+| Rejected | != 0 | >= 1 |
+
+
+Below is an example that generates a sequence of figures showing the geolocation of assimilated, rejected, and monitored radiance data (`figMap=True`) over a time interval within the data period loaded at the beginning of the notebook.
+
+=== "Command"
+
+ ```python linenums="1"
+ channel = 6
+ dateIni = '2024020100'
+ dateFin = '2024020118'
+
+ gd.plot_diag.statcount(gdf_list,
+ varName=varName,
+ varType=varType,
+ noiqc=False,
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ channel=channel,
+ figTS=False,
+ figMap=True,
+ markersize=4.80)
+ ```
+
+=== "Result"
+
+ ![png](../imgs/statc1.png)
+ ![png](../imgs/statc2.png)
+ ![png](../imgs/statc3.png)
+ ![png](../imgs/statc4.png)
+
+When `figTS=True`, only one figure with the time series of the quantity of assimilated, rejected, and monitored data is returned.
+
+=== "Command"
+
+ ```python linenums="1"
+ channel = 6
+ dateIni = '2024020100'
+ dateFin = '2024020218'
+
+ gd.plot_diag.statcount(gdf_list,
+ varName=varName,
+ varType=varType,
+ noiqc=False,
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ channel=channel,
+ figTS=True,
+ figMap=False,
+ markersize=4.80)
+
+ channel = 8
+ gd.plot_diag.statcount(gdf_list,
+ varName=varName,
+ varType=varType,
+ noiqc=False,
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ channel=channel,
+ figTS=True,
+ figMap=False,
+ markersize=4.80)
+ ```
+
+=== "Result"
+
+ ![png](../imgs/statc5.png)
+ ![png](../imgs/statc6.png)
+
+After using the files, close them to free up the memory used:
+
+```python linenums="1"
+for file in gdf_list:
+ if file._FNumber != None:
+ file.close()
+```
+
+`readDiag` is a package under development and constantly being updated. New features will be added and demonstrated through this notebook.
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020100.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020100.png
new file mode 100644
index 0000000..96fc152
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020100.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020106.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020106.png
new file mode 100644
index 0000000..b7ec8d2
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020106.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020112.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020112.png
new file mode 100644
index 0000000..9663238
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020112.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020118.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020118.png
new file mode 100644
index 0000000..2b430ea
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020118.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020200.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020200.png
new file mode 100644
index 0000000..e4717d8
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020200.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020206.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020206.png
new file mode 100644
index 0000000..bec3c73
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020206.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020212.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020212.png
new file mode 100644
index 0000000..7342f09
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020212.png differ
diff --git a/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020218.png b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020218.png
new file mode 100644
index 0000000..386f013
Binary files /dev/null and b/docs/imgs/Assim-Rejei_amsua-n19_CH6_2024020218.png differ
diff --git a/docs/imgs/amsua_n19_obs_CH14_2024020100_plot_0.png b/docs/imgs/amsua_n19_obs_CH14_2024020100_plot_0.png
new file mode 100644
index 0000000..53e6c9a
Binary files /dev/null and b/docs/imgs/amsua_n19_obs_CH14_2024020100_plot_0.png differ
diff --git a/docs/imgs/hov1.png b/docs/imgs/hov1.png
new file mode 100644
index 0000000..dc5d524
Binary files /dev/null and b/docs/imgs/hov1.png differ
diff --git a/docs/imgs/hov2.png b/docs/imgs/hov2.png
new file mode 100644
index 0000000..0559ca6
Binary files /dev/null and b/docs/imgs/hov2.png differ
diff --git a/docs/imgs/hov3.png b/docs/imgs/hov3.png
new file mode 100644
index 0000000..2983a9f
Binary files /dev/null and b/docs/imgs/hov3.png differ
diff --git a/docs/imgs/hov4.png b/docs/imgs/hov4.png
new file mode 100644
index 0000000..8120cd8
Binary files /dev/null and b/docs/imgs/hov4.png differ
diff --git a/docs/imgs/hov5.png b/docs/imgs/hov5.png
new file mode 100644
index 0000000..4f8517c
Binary files /dev/null and b/docs/imgs/hov5.png differ
diff --git a/docs/imgs/hov6.png b/docs/imgs/hov6.png
new file mode 100644
index 0000000..702d88f
Binary files /dev/null and b/docs/imgs/hov6.png differ
diff --git a/docs/imgs/hov7.png b/docs/imgs/hov7.png
new file mode 100644
index 0000000..659af7d
Binary files /dev/null and b/docs/imgs/hov7.png differ
diff --git a/docs/imgs/kxcount.png b/docs/imgs/kxcount.png
new file mode 100644
index 0000000..4b0fbaa
Binary files /dev/null and b/docs/imgs/kxcount.png differ
diff --git a/docs/imgs/pcount.png b/docs/imgs/pcount.png
new file mode 100644
index 0000000..f1e61b0
Binary files /dev/null and b/docs/imgs/pcount.png differ
diff --git a/docs/imgs/statc1.png b/docs/imgs/statc1.png
new file mode 100644
index 0000000..a0b2cf5
Binary files /dev/null and b/docs/imgs/statc1.png differ
diff --git a/docs/imgs/statc2.png b/docs/imgs/statc2.png
new file mode 100644
index 0000000..fe5c503
Binary files /dev/null and b/docs/imgs/statc2.png differ
diff --git a/docs/imgs/statc3.png b/docs/imgs/statc3.png
new file mode 100644
index 0000000..55cc0f9
Binary files /dev/null and b/docs/imgs/statc3.png differ
diff --git a/docs/imgs/statc4.png b/docs/imgs/statc4.png
new file mode 100644
index 0000000..4c647f5
Binary files /dev/null and b/docs/imgs/statc4.png differ
diff --git a/docs/imgs/statc5.png b/docs/imgs/statc5.png
new file mode 100644
index 0000000..f93fbaa
Binary files /dev/null and b/docs/imgs/statc5.png differ
diff --git a/docs/imgs/statc6.png b/docs/imgs/statc6.png
new file mode 100644
index 0000000..5c694e6
Binary files /dev/null and b/docs/imgs/statc6.png differ
diff --git a/docs/imgs/time_series_amsua-n19_CH6__TotalObs.png b/docs/imgs/time_series_amsua-n19_CH6__TotalObs.png
new file mode 100644
index 0000000..b33962d
Binary files /dev/null and b/docs/imgs/time_series_amsua-n19_CH6__TotalObs.png differ
diff --git a/docs/imgs/ts1.png b/docs/imgs/ts1.png
new file mode 100644
index 0000000..bc68215
Binary files /dev/null and b/docs/imgs/ts1.png differ
diff --git a/docs/imgs/ts2.png b/docs/imgs/ts2.png
new file mode 100644
index 0000000..5d8436d
Binary files /dev/null and b/docs/imgs/ts2.png differ
diff --git a/docs/imgs/ts3.png b/docs/imgs/ts3.png
new file mode 100644
index 0000000..c0af7d1
Binary files /dev/null and b/docs/imgs/ts3.png differ
diff --git a/docs/imgs/ts4.png b/docs/imgs/ts4.png
new file mode 100644
index 0000000..096e560
Binary files /dev/null and b/docs/imgs/ts4.png differ
diff --git a/docs/imgs/ts5.png b/docs/imgs/ts5.png
new file mode 100644
index 0000000..361524f
Binary files /dev/null and b/docs/imgs/ts5.png differ
diff --git a/docs/imgs/ts6.png b/docs/imgs/ts6.png
new file mode 100644
index 0000000..5659348
Binary files /dev/null and b/docs/imgs/ts6.png differ
diff --git a/docs/imgs/ts7.png b/docs/imgs/ts7.png
new file mode 100644
index 0000000..224b949
Binary files /dev/null and b/docs/imgs/ts7.png differ
diff --git a/docs/imgs/ts8.png b/docs/imgs/ts8.png
new file mode 100644
index 0000000..1e3669b
Binary files /dev/null and b/docs/imgs/ts8.png differ
diff --git a/docs/imgs/uv_254_242_221_220_257_258_281_280_ptmap.png b/docs/imgs/uv_254_242_221_220_257_258_281_280_ptmap.png
index a60a272..ee92d47 100644
Binary files a/docs/imgs/uv_254_242_221_220_257_258_281_280_ptmap.png and b/docs/imgs/uv_254_242_221_220_257_258_281_280_ptmap.png differ
diff --git a/docs/imgs/uv_obs_plot.png b/docs/imgs/uv_obs_plot.png
index 8078321..ec70dc2 100644
Binary files a/docs/imgs/uv_obs_plot.png and b/docs/imgs/uv_obs_plot.png differ
diff --git a/docs/imgs/uv_pcount.png b/docs/imgs/uv_pcount.png
new file mode 100644
index 0000000..77915fb
Binary files /dev/null and b/docs/imgs/uv_pcount.png differ
diff --git a/docs/imgs/uv_ps_t_pvmap.png b/docs/imgs/uv_ps_t_pvmap.png
index d36f281..50f26bd 100644
Binary files a/docs/imgs/uv_ps_t_pvmap.png and b/docs/imgs/uv_ps_t_pvmap.png differ
diff --git a/docs/imgs/vcount.png b/docs/imgs/vcount.png
new file mode 100644
index 0000000..27695a2
Binary files /dev/null and b/docs/imgs/vcount.png differ
diff --git a/docs/imgs/vcount2.png b/docs/imgs/vcount2.png
new file mode 100644
index 0000000..3b612a2
Binary files /dev/null and b/docs/imgs/vcount2.png differ
diff --git a/docs/pt/uso.md b/docs/pt/uso.md
index cf5f5b8..adcfed2 100644
--- a/docs/pt/uso.md
+++ b/docs/pt/uso.md
@@ -1210,4 +1210,932 @@ for file in gdf_list:
file.close()
```
+## Radiância
+
+Nesta seção apresentam-se as funções do `readDiag` construídas e modificadas para acesso aos arquivos de diagnóstico da radiância gerados pelo GSI.
+
+### A Classe `read_diag`
+
+A classe `read_diag` não foi alterada. Abaixo as ferramentas desta classe são utilizadas como exemplo para visualização do diagnóstico de dados de radiância.
+
+
+### A Classe `plot_diag`
+
+Na classe `plot_diag` as funções abaixo foram construídas ou modificadas para leitura e análise dos dados de radiância:
+
+1. `plot(self, varName, varType, param, minVal=None, maxVal=None, mask=None, area=None, **kwargs)`: a função `plot` gera uma figura para a variável `varName` (ex: `amsua`), `varType` (ex: `n19` (satélite)) e `param`, que pode ser várias opções como: `param="obs"` para o valor da observação, `param="omf"` para observação menos background ou `param="oma"` para observação menos análise. Foram inseridas as variáveis opicionais `minVal` e `maxVal` para fixar o range de cores do colormap. Também é possível mascarar os dados com as variáveis `iuse` e `idqc`, que indicam se o dado de radiância foi (`iuse>=1 & idqc=0`) assimilado ou rejeitado (`iuse>=1 & idqc!=0`), ou ainda, se o dado é monitorado (`iuse=-1`). Utilizando o `mask` ainda é possível especificar o canal `nchan` (nº do canal). Abaixo há um exemplo executado para `varName="amsua"`, `varType="n19"`, `param="obs"` e `mask="(nchan==14) & (iuse >= 1 & idqc == 0)"`;
+
+
+
+
+2. `time_series_radi(self, varName=None, varType=None, mask=None, dateIni=None, dateFin=None, nHour="06", vminOMA=None, vmaxOMA=None, vminSTD=0.0, vmaxSTD=14.0, channel=None, Clean=None)`: a função `time_series_radi` gera figuras que mostram a variação temporal das médias e desvios padrões dos parâmetros OmF e OmA dos dados de radiância. Essa função pode ser utilizada considerando-se três situações: quando `channel` é o nº de um canal (4 Figuras são geradas utilizando apenas as observações do canal espeificado), quando `channel` é uma lista de canais (6 diagramas de *Hovmoller* são criados considerando apenas os canais listados) e quando `channel` é `None` (são gerados 6 diagramas de *Hovmoller* considerando todos os canais disponíveis (1 à 15)).
+
+ A seguir são apresentados os parâmetros de entrada na função.
+
+ | Parâmetro | Exemplo | Descrição |
+ | :--- | :---: | :--- |
+ | `self` | `['/home/user/diag_amsua_n19_01.2024020100']` | Lista com todos os caminhos completos (`caminho/nome_do_arquivo`) de cada tempo da série temporal. |
+ | `varName` | `amsua` | Nome da variável |
+ | `varType` | `n19` | Tipo da variável |
+ | `dateIni` | `2024020100` | Data inicial da série temporal |
+ | `dateFin` | `2024020218` | Data final da série temporal |
+ | `nHour` | `6` | Intervalo de tempo em horas entre cada arquivo na lista `self` |
+ | `vminOMA` | `-2.0` | Valor mínimo da escala y (ordenada) para OmF e OmA |
+ | `vmaxOMA` | `2.0` | Valor máximo da escala y (ordenada) para OmF e OmA |
+ | `vminSTD` | `0.0` | Valor mínimo da escala y (ordenada) para o desvio-padrão |
+ | `vmaxSTD` | `14.0` | Valor máximo da escala y (ordenada) para o desvio-padrão |
+ | `channel` | `14` | Valor(es) do canal a ser feita a série temporal, opções: valor numérico referente ao canal, ex.: `14` para plotar um canal; `[6, 9, 10, 13, 14]` para plotar uma lista de canais específica; `None` para plotar todos os canais. |
+ | `Clean` | `True` ou `False` | Se `True`, após gerar e salvar a figura, a janela da figura é reiniciada (`plt.clf()`) ou fechada (`plt.close()`), se `False`, este procedimento é eliminado e a figura continua disponível para visualização com `plt.show()`. |
+
+3. `statcount(self, varName=None, varType=None, noiqc=False, dateIni=None, dateFin=None, nHour="06", channel=None, figTS=False, figMap=False, **kwargs)`: a função `statcount` gera dois tipos de figuras. Se `figTS` é `True` uma figura com a série temporal da quantidade de dados assimilados, rejeitados e monitorados é gerada. Se `figMap` é `True` uma sequência temporal de figuras indicando no mapa a geolocalização das observações assimiladas, rejeitadas e monitoradas são produzidas. Nesta função, quando os dados são de radiância, a variável `channel` recebe o número específico de um canal e quando se trata de dados convencionais a variável `channel` deve ser `None`. Quando `channel = nº canal` os dados monitorados (`iuse=-1`) são subclassificados em dois grupos: observações monitoradas que seriam assimiladas (monitorado-assimilado) pois, `idqc=0` e observações monitoradas que seriam rejeitadas (monitorado-rejeitado) pois, `idqc!=0`. Logo, para os dados de radiância, se `figMap=True` podem ser geradas duas figuras, uma com a geolocalização das observações assimiladas e rejeitadas e outra com a geolocalização das observações monitoradas-assimiladas e monitoradas-rejeitadas. A variável `noiqc` é um parâmetro da lista de nomes do GSI sendo utilizada na classificação dos dados convencionais e pode receber os valores `True` ou `False` (não interfere na classificação da radiância). Abaixo há um exemplo executado para `varName="amsua"`, `varType="n19"`, `noiqc=False`, `dateIni="2024020100"`, `dateFin="2024020218"`, `nHour="06"`, `channel=6`, `figTS=True`, `figMap=True`.
+
+
+`figMap=True`
+
+
+
+
+
+
+
+`figTS=True`
+
+
+
+
+No decorrer deste notebook são mostrados exemplos com recortes de código para exemplificar o uso das funções acima elencadas.
+
+### Utilização da classe `read_diag`
+
+#### Bibliotecas necessárias
+
+Para iniciar a utilização do `readDiag`, carregue primeiro as bibliotecas necessárias para a sua utilização:
+
+* `gsidiag`: é a biblioteca que contém as classes `read_diag` e `plot_diag`;
+* `pandas`: é a biblioteca que fornece as estruturas de dados tabulados utilizadas pelo `readDiag`;
+* `matplotlib`: é a biblioteca a partir da qual são confeccionadas as figuras;
+* `datetime`: é a biblioteca utilizada para manipular datas;
+* `datasources`: é a biblioteca utilizada para analisar e armazenar informações de um arquivo contendo dados de observações;
+* `os`: é a biblioteca que fornece diversas interfaces do sistema operacional.
+
+
+A instrução `%matplotlib inline` é um comando mágico do Jupyter e apenas ajusta o ambiente para que não seja necessário utilizar o comando `plt.show()` sempre que figuras forem mostradas dentro do notebook. Se você estiver utilizando o `readDiag` dentro de um script Python, esta diretiva pode ser suprimida e o comando `plt.show()` deve ser utilizado, a depender da situação.
+
+```python linenums="1"
+import gsidiag as gd
+
+import pandas as pd
+import matplotlib.pyplot as plt
+from datetime import datetime, timedelta
+from gsidiag.datasources import getVarInfo
+
+import os
+
+%matplotlib inline
+```
+
+#### Variáveis principais
+
+Na tabela a seguir, estão relacionadas os valores padrão das variáveis utilizadas ao longo deste tutorial. Observe que as variáveis possuem diferentes tipos e que algumas podem ser declaradas como `None`.
+
+| Variáveis | | Valores | Tipo |
+| :---: |:---:| :--- | :--- |
+| `DIRdiag` | = | `/pesq/share/das/dist/joao.gerd/EXP18/GSI/dataout` | string |
+|`varName` | = | `amsua` | string |
+|`varType` | = | `n19` | **string** |
+|`dateIni` | = | `2024021000` | string |
+|`dateFin` | = | `2024021018` | string |
+|`nHour` | = | `6` | string |
+|`vminOMA` | = | `-2.0` | float |
+|`vmaxOMA` | = | `2.0` | float |
+|`vminSTD` | = | `0.0` | float |
+|`vmaxSTD` | = | `14.0` | float |
+|`channel` | = | `6` | integer ou `None` |
+
+Dessa forma, na célula a seguir são ajustadas as variáveis seguindo os valores da tabela acima. Além disso, são ajustados também os valores das datas para compor o caminho e os nomes dos arquivos de diagnóstico do GSI:
+
+!!! tip "Dica"
+
+ Para testar as funcionalidades do readDiag relacionadas com as radiâncias, baixe os arquivos a seguir dentro do diretório `data` da sua instalação do readDiag:
+
+ ```bash linenums="1"
+ cd readDiag/data
+
+ wget https://ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19_amsua.tar.gz
+ wget https://ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19_conv_0201.tar.gz
+ wget https://ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19_conv_0202.tar.gz
+
+ tar -zxvf SMNAexp19_amsua.tar.gz
+ tar -zxvf SMNAexp19_conv_0201.tar.gz
+ tar -zxvf SMNAexp19_conv_0202.tar.gz
+ ```
+
+=== "Comando"
+
+ ```python linenums="1"
+ DIRdiag = os.path.join(os.getcwd(), '../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout')
+
+ varName = 'amsua'
+ varType = 'n19'
+ dateIni = '2024020100'
+ dateFin = '2024020218'
+ nHour = '6'
+ vminOMA = -2.0
+ vmaxOMA = 2.0
+ vminSTD = 0.0
+ vmaxSTD = 14.0
+ channel = 6
+
+ datei = datetime.strptime(str(dateIni), '%Y%m%d%H')
+ datef = datetime.strptime(str(dateFin), '%Y%m%d%H')
+ dates = [dates.strftime('%Y%m%d%H') for dates in pd.date_range(datei, datef,freq='6H').tolist()]
+
+ print(dates)
+ ```
+
+
+=== "Resultado"
+
+ ```
+ ['2024020100', '2024020106', '2024020112', '2024020118', '2024020200', '2024020206', '2024020212', '2024020218']
+ ```
+
+Gerando as variáveis `path` e `pathc` onde estarão os caminhos completos (incluindo nome do arquivo) dos arquivos diagnósticos do primeiro (OmF) e último (OmA) outer loop dos dados de radiância:
+
+=== "Comando"
+
+ ```python linenums="1"
+ paths, pathsc = [], []
+
+ OuterL = '01'
+ [paths.append(DIRdiag + '/' + dt + '/diag_' + varName +'_'+ varType +'_' + OuterL + '.' + dt) for dt in dates]
+
+ OuterLc = '03'
+ [pathsc.append(DIRdiag + '/' + dt + '/diag_' + varName +'_'+ varType +'_' + OuterLc + '.' + dt) for dt in dates]
+
+ print(paths)
+ print('')
+ print(pathsc)
+ ```
+
+=== "Resultado"
+
+ ```
+ ['/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020100/diag_amsua_n19_01.2024020100', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020106/diag_amsua_n19_01.2024020106', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020112/diag_amsua_n19_01.2024020112', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020118/diag_amsua_n19_01.2024020118', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020200/diag_amsua_n19_01.2024020200', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020206/diag_amsua_n19_01.2024020206', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020212/diag_amsua_n19_01.2024020212', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020218/diag_amsua_n19_01.2024020218']
+
+ ['/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020100/diag_amsua_n19_03.2024020100', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020106/diag_amsua_n19_03.2024020106', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020112/diag_amsua_n19_03.2024020112', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020118/diag_amsua_n19_03.2024020118', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020200/diag_amsua_n19_03.2024020200', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020206/diag_amsua_n19_03.2024020206', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020212/diag_amsua_n19_03.2024020212', '/extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020218/diag_amsua_n19_03.2024020218']
+ ```
+
+#### Leitura dos arquivos de diagnósticos
+
+Lendo os arquivos diagnósticos de radiância com a função `read_diag()` do pacote `readDiag`. No trecho de código a seguir, observe que a função `read_diag()` é utilizada dentro de um loop que varia sobre todos os arquivos das listas `paths` e `pathsc` definidas no passo anterior. No final do loop, é gerada a lista `gdf_list` que conterá todos os arquivos lidos pelo `readDiag`:
+
+
+=== "Comando"
+
+ ```python linenums="1"
+ read = True
+
+ if read:
+ gdf_list = []
+ print('')
+
+ print('Aguarde, o tempo total estimado para a leitura dos arquivos é de ' +
+ str(int((float(len(paths))*20)/60)) + ' minutos e ' +
+ str(int((float(len(paths))*20)%60)) + ' segundos.')
+
+ print('')
+
+ for path, pathc in zip(paths, pathsc):
+ print('Reading ' + path)
+
+ gdf = gd.read_diag(path, pathc)
+
+ gdf_list.append(gdf)
+
+ print('Pronto!')
+ ```
+
+=== "Resultado"
+
+ ```
+ Aguarde, o tempo total estimado para a leitura dos arquivos é de 2 minutos e 40 segundos.
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020100/diag_amsua_n19_01.2024020100
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020106/diag_amsua_n19_01.2024020106
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020112/diag_amsua_n19_01.2024020112
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020118/diag_amsua_n19_01.2024020118
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020200/diag_amsua_n19_01.2024020200
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020206/diag_amsua_n19_01.2024020206
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020212/diag_amsua_n19_01.2024020212
+
+ >>> GSI DIAG <<<
+
+ Reading /extra3/GitHub/readDiag.issuefix_27/notebooks/../data/ftp1.cptec.inpe.br/pesquisa/das/testecase/SMNAexp19/GSI/dataout/2024020218/diag_amsua_n19_01.2024020218
+
+ >>> GSI DIAG <<<
+
+ Pronto!
+ ```
+
+A variável `gdf_list` é uma lista de dataframes contendo os dados de cada arquivo diagnóstico. Para trabalhar com um único tempo basta informar a lista com o índice fixo, por exemplo: `gdf_list[0]`:
+
+=== "Comando"
+
+ ```python linenums="1"
+ gdf_list
+ ```
+
+=== "Resultado"
+
+ ```
+ [,
+ ,
+ ,
+ ,
+ ,
+ ,
+ ,
+ ]
+ ```
+
+Fazendo `tidx = 0`, obtemos o primeiro objeto da lista `gdf_list`:
+
+=== "Comando"
+
+ ```python linenums="1"
+ tidx = 0
+ gdf_list[tidx]
+ ```
+
+=== "Resultado"
+
+ ```
+
+ ```
+
+#### Obtendo informações dos arquivos
+
+Utilize a função `pfileinfo()` para obter informação como o tipo de sensor e seu respectivo satélite (`n19`) que estão contidos dentro do arquivo:
+
+=== "Comando"
+
+ ```python linenums="1"
+ gdf_list[tidx].pfileinfo()
+ ```
+
+=== "Resultado"
+
+ ```
+ Variable Name : amsua
+ └── kx => n19
+ ```
+
+Além do método `pfileinfo()`, outros métodos e funções também podem ser utilizados para acessar as informações sobre os arquivos abertos. Para obter uma lista dos métodos e funções disponíveis, digite `gdf_list[tidx].` e pressione a tecla `` duas vezes no teclado:
+
+```python linenums="1"
+>>> gdf_list[tidx].
+gdf_list[tidx].close( gdf_list[tidx].obsInfo gdf_list[tidx].pfileinfo( gdf_list[tidx].zlevs
+gdf_list[tidx].tocsv( gdf_list[tidx].overview( gdf_list[tidx].varNames
+gdf_list[tidx].obs
+```
+
+Para obter um dicionário com todas as informações sobre as variáveis e tipos contidos no arquivo, utilize o método `obsInfo`:
+
+=== "Comando"
+
+ ```python linenums="1"
+ gdf_list[tidx].obsInfo
+ ```
+
+=== "Resultado"
+
+```
+{'amsua': lat lon elev nchan time iuse idqc \
+ SatId points
+ n19 0 -87.446198 6.644900 2647.032227 1.0 2.885000 1.0 8.0
+ 1 -87.446198 6.644900 2647.032227 2.0 2.885000 1.0 8.0
+ 2 -87.446198 6.644900 2647.032227 3.0 2.885000 1.0 8.0
+ 3 -87.446198 6.644900 2647.032227 4.0 2.885000 1.0 8.0
+ 4 -87.446198 6.644900 2647.032227 5.0 2.885000 1.0 8.0
+ ... ... ... ... ... ... ... ...
+ 137830 56.754601 336.250885 0.055578 11.0 -1.522778 1.0 0.0
+ 137831 56.754601 336.250885 0.055578 12.0 -1.522778 1.0 0.0
+ 137832 56.754601 336.250885 0.055578 13.0 -1.522778 1.0 0.0
+ 137833 56.754601 336.250885 0.055578 14.0 -1.522778 4.0 0.0
+ 137834 56.754601 336.250885 0.055578 15.0 -1.522778 1.0 51.0
+
+ inverr oer obs omf omf_nobc emiss \
+ SatId points
+ n19 0 0.000000 NaN 187.330002 2.591137 -7.817700 0.813564
+ 1 0.000000 NaN 189.190002 4.114823 -3.598879 0.801515
+ 2 0.000000 NaN 211.460007 -1.666820 2.795111 0.791668
+ 3 0.000000 NaN 225.820007 0.495127 -0.318058 0.791438
+ 4 0.000000 NaN 229.089996 0.241357 -1.846274 0.790830
+ ... ... ... ... ... ... ...
+ 137830 2.499857 0.400023 219.949997 0.632804 -0.609745 0.856901
+ 137831 1.817697 0.550150 219.039993 0.488474 -0.474023 0.856901
+ 137832 1.248405 0.801043 217.449997 -1.116789 -1.843264 0.856901
+ 137833 0.248456 4.025372 219.979996 -0.762485 -0.762485 0.856901
+ 137834 0.000000 NaN 229.039993 -23.291994 -41.154434 0.950000
+
+ oma oma_nobc imp dfs \
+ SatId points
+ n19 0 2.803686 -7.640147 NaN NaN
+ 1 4.388880 -3.414203 NaN NaN
+ 2 -1.364057 3.049402 NaN NaN
+ 3 0.594996 -0.230114 NaN NaN
+ 4 0.297319 -1.806047 NaN NaN
+ ... ... ... ... ...
+ 137830 0.451392 -0.792813 -0.491687 -0.286979
+ 137831 0.409210 -0.554484 -0.129336 -0.070378
+ 137832 -0.789088 -1.543222 -0.779681 -0.456870
+ 137833 0.452604 0.452604 -0.093540 -0.230162
+ 137834 -23.673958 -41.430882 NaN NaN
+
+ geometry
+ SatId points
+ n19 0 POINT (6.64490 -87.44620)
+ 1 POINT (6.64490 -87.44620)
+ 2 POINT (6.64490 -87.44620)
+ 3 POINT (6.64490 -87.44620)
+ 4 POINT (6.64490 -87.44620)
+ ... ...
+ 137830 POINT (-23.74915 56.75460)
+ 137831 POINT (-23.74915 56.75460)
+ 137832 POINT (-23.74915 56.75460)
+ 137833 POINT (-23.74915 56.75460)
+ 137834 POINT (-23.74915 56.75460)
+
+ [137835 rows x 18 columns]}
+```
+
+Para acessar uma variável específica (ex: `amsua`), faça:
+
+=== "Comando"
+
+ ```python linenums="1"
+ print('Variável: ', varName)
+
+ gdf_list[tidx].obsInfo[varName]
+ ```
+
+=== "Resultado"
+
+ Variável: amsua
+
+ | | |lat |lon |elev |nchan|time |iuse|idqc | inverr|oer |obs |omf |omf_nobc |emiss |oma |oma_nobc |imp |dfs |geometry |
+ | | | | | | | | | | | | | | | | | | | | |
+ |**SatId**| **points**| | | | | | | | | | | | | | | | | | |
+ | n19| 0| -87.446198| 6.644900| 2647.032227| 1.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 187.330002| 2.591137| -7.817700| 0.813564| 2.803686| -7.640147| NaN| NaN| POINT (6.64490 -87.44620)|
+ | | 1| -87.446198| 6.644900| 2647.032227| 2.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 189.190002| 4.114823| -3.598879| 0.801515| 4.388880| -3.414203| NaN| NaN| POINT (6.64490 -87.44620)|
+ | | 2| -87.446198| 6.644900| 2647.032227| 3.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 211.460007| -1.666820| 2.795111| 0.791668| -1.364057| 3.049402| NaN| NaN| POINT (6.64490 -87.44620)|
+ | | 3| -87.446198| 6.644900| 2647.032227| 4.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 225.820007| 0.495127| -0.318058| 0.791438| 0.594996| -0.230114| NaN| NaN| POINT (6.64490 -87.44620)|
+ |... | | | | | | | | | | | | | | | | | | | |
+ | | 137832| 56.754601| 336.250885| 0.055578| 13.0| -1.522778| 1.0| 0.0| 1.248405| 0.801043| 217.449997| -1.116789| -1.843264| 0.856901| -0.789088| -1.543222| -0.779681| -0.456870| POINT (-23.74915 56.75460)|
+ | | 137833| 56.754601| 336.250885| 0.055578| 14.0| -1.522778| 4.0| 0.0| 0.248456| 4.025372| 219.979996| -0.762485| -0.762485| 0.856901| 0.452604| 0.452604| -0.093540| -0.230162| POINT (-23.74915 56.75460)|
+ | | 137834| 56.754601| 336.250885| 0.055578| 15.0| -1.522778| 1.0| 51.0| 0.000000| NaN| 229.039993| -23.291994| -41.154434| 0.950000| -23.673958| -41.430882| NaN| NaN| POINT (-23.74915 56.75460)|
+
+ 137835 rows × 18 columns
+
+
+Para acessar variável e tipo específicos (ex: `amsua` do tipo `n19`), faça:
+
+=== "Comando"
+
+ ```python linenums="1"
+ print('Variável: ', varName, ' e Tipo: ', varType)
+
+ gdf_list[tidx].obsInfo[varName].loc[varType]
+ ```
+
+
+=== "Resultado"
+
+ | |lat |lon |elev |nchan|time |iuse|idqc | inverr|oer |obs |omf |omf_nobc |emiss |oma |oma_nobc |imp |dfs |geometry |
+ | | | | | | | | | | | | | | | | | | | |
+ | **points**| | | | | | | | | | | | | | | | | | |
+ | 0| -87.446198| 6.644900| 2647.032227| 1.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 187.330002| 2.591137| -7.817700| 0.813564| 2.803686| -7.640147| NaN| NaN| POINT (6.64490 -87.44620)|
+ | 1| -87.446198| 6.644900| 2647.032227| 2.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 189.190002| 4.114823| -3.598879| 0.801515| 4.388880| -3.414203| NaN| NaN| POINT (6.64490 -87.44620)|
+ | 2| -87.446198| 6.644900| 2647.032227| 3.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 211.460007| -1.666820| 2.795111| 0.791668| -1.364057| 3.049402| NaN| NaN| POINT (6.64490 -87.44620)|
+ | 3| -87.446198| 6.644900| 2647.032227| 4.0 | 2.885000| 1.0| 8.0| 0.000000| NaN| 225.820007| 0.495127| -0.318058| 0.791438| 0.594996| -0.230114| NaN| NaN| POINT (6.64490 -87.44620)|
+ |... | | | | | | | | | | | | | | | | | | |
+ | 137832| 56.754601| 336.250885| 0.055578| 13.0| -1.522778| 1.0| 0.0| 1.248405| 0.801043| 217.449997| -1.116789| -1.843264| 0.856901| -0.789088| -1.543222| -0.779681| -0.456870| POINT (-23.74915 56.75460)|
+ | 137833| 56.754601| 336.250885| 0.055578| 14.0| -1.522778| 4.0| 0.0| 0.248456| 4.025372| 219.979996| -0.762485| -0.762485| 0.856901| 0.452604| 0.452604| -0.093540| -0.230162| POINT (-23.74915 56.75460)|
+ | 137834| 56.754601| 336.250885| 0.055578| 15.0| -1.522778| 1.0| 51.0| 0.000000| NaN| 229.039993| -23.291994| -41.154434| 0.950000| -23.673958| -41.430882| NaN| NaN| POINT (-23.74915 56.75460)|
+
+ 137835 rows × 18 columns
+
+Para acessar o valor da observação, utilize o método `obs`:
+
+=== "Comando"
+
+ ```python linenums="1"
+ print('Variável: ', varName, ' e Tipo: ', varType)
+
+ gdf_list[tidx].obsInfo[varName].loc[varType].obs
+ ```
+
+=== "Resultado"
+
+ ```
+ Variável: amsua e Tipo: n19
+ [13]:
+ points
+ 0 187.330002
+ 1 189.190002
+ 2 211.460007
+ 3 225.820007
+ 4 229.089996
+ ...
+ 137830 219.949997
+ 137831 219.039993
+ 137832 217.449997
+ 137833 219.979996
+ 137834 229.039993
+ Name: obs, Length: 137835, dtype: float32
+ ```
+
+Para acessar o valor do controle de qualidade da observação em um canal específico, utilize o método idqc com a instrução `mask` na função query:
+
+=== "Comando"
+
+ ```python linenums="1"
+ mask = 'nchan == 2'
+ gdf_list[tidx].obsInfo[varName].query(mask).loc[varType].idqc
+ ```
+
+=== "Resultado"
+
+ ```
+ points
+ 1 8.0
+ 16 8.0
+ 31 51.0
+ 46 51.0
+ 61 51.0
+ ...
+ 137761 51.0
+ 137776 51.0
+ 137791 51.0
+ 137806 51.0
+ 137821 51.0
+ Name: idqc, Length: 9189, dtype: float32
+ ```
+
+### Utilização da classe `plot_diag`
+
+#### Distribuição espacial
+
+A utilização das funções da classe `plot_diag` que foram alteradas/construídas para diagnóstico de dados de **radiância** é apresentada abaixo, junto com os comandos para gerar diversos tipos de figuras.
+
+Gerando uma figura com os valores das observações (`param='obs'`) para a variável e tipo selecionados:
+
+=== "Comando"
+
+ ```python linenums="1"
+ param = 'obs'
+
+ gd.plot_diag.plot(gdf_list[tidx],
+ varName=varName,
+ varType=varType,
+ param=param,
+ mask="(nchan=="+str(channel)+") & (iuse >= 1 & idqc == 0)",
+ markersize=4.80,
+ legend='true')
+ ```
+
+=== "Resultado"
+
+ ![png](../imgs/amsua_n19_obs_CH14_2024020100_plot_0.png)
+
+
+#### Histograma
+
+As funções `pcount()` e `vcount()` da classe `plot_diag` também podem ser utilizadas para obter um histograma com a contagem do número de observações para a variável, porém, no caso da **radiância**, como há apenas os dados de uma variável (sensor) e um tipo (satélite) nos arquivos, ambas as funções geram o mesmo histograma com uma única coluna:
+
+=== "Comando"
+
+ ```python linenums="1"
+ gd.plot_diag.pcount(gdf_list[tidx], varName)
+ ```
+
+=== "Resultado"
+
+ ![png](../imgs/pcount.png)
+
+Utilize a função `vcount()` da classe `plot_diag` para obter um histograma com a contagem do número de observações para todos os tipos de variáveis:
+
+=== "Comando"
+
+ ```python linenums="1"
+ gd.plot_diag.vcount(gdf_list[tidx])
+ ```
+
+=== "Resultado"
+
+ ![png](../imgs/vcount2.png)
+
+
+#### Série temporal
+
+
+A seguir são apresentadas as opções de figuras com a função `time_series_radi()` (nova função), incluída na classe `plot_diag`. Inicialmente é gerada uma figura com os parâmetros já fixados nesta seção. Em seguida são apresentadas figuras alterando o parâmetro `channel`.
+
+Plotando uma série temporal do OmA e OmF para os dados do canal setado na célula de definição das variáveis:
+
+=== "Comando"
+
+ ```python linenums="1"
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Resultado"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: 2024-02-01:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:18 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:18 - Channel de radiancia: 6
+
+ =============================================================================================================
+
+ channels = [6]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/ts1.png)
+ ![png](../imgs/ts2.png)
+ ![png](../imgs/ts3.png)
+ ![png](../imgs/ts4.png)
+
+
+No caso anterior, o parâmetro `channel` estava fixo no canal 6. Os valores de vminOMA, vmaxOMA, vminSTD e vmaxSTD, fixados inicialmente, são alterados para melhorar a visualização da série temporal.
+
+=== "Comando"
+
+ ```python linenums="1"
+ vminOMA = -0.5
+ vmaxOMA = 0.5
+ vminSTD = 0.0
+ vmaxSTD = 1.0
+
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Resultado"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: 2024-02-01:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-01:18 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:00 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:06 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:12 - Channel de radiancia: 6
+ Preparing data for: 2024-02-02:18 - Channel de radiancia: 6
+
+ =============================================================================================================
+
+ channels = [6]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/ts5.png)
+ ![png](../imgs/ts6.png)
+ ![png](../imgs/ts7.png)
+ ![png](../imgs/ts8.png)
+
+Agora, a variável `channel` é alterada para considerar mais de um canal. A opção `channel = None` busca os dados em cada canal existente nos arquivos e faz um diagrama de *Hovmoller* com as médias, desvios padrão e quantidade de dados assimilados em todos os canais (observe que os valores no eixo y (ordenada) identifica todos os canais de 1 à 15). Quando `channel` é uma lista específica de canais, indicada pelo usuário, o diagrama de *Hovmoller* é construído apenas com os canais indicados pelo usuário.
+
+Dessa forma, pode-se utilizar o parâmetro `channels=[6,10,11,12,13,14]` para produzir uma série temporal para mais de um canal:
+
+=== "Comando"
+
+ ```python linenums="1"
+ channels = [6, 10, 11, 12, 13, 14]
+
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channels,
+ Clean=False)
+ ```
+
+=== "Resultado"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: Canais de radiancia2024-02-01:00
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-01:06
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-01:12
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-01:18
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-02:00
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-02:06
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-02:12
+ Channels: [6, 10, 11, 12, 13, 14]
+
+ Preparing data for: Canais de radiancia2024-02-02:18
+ Channels: [6, 10, 11, 12, 13, 14]
+
+
+ =============================================================================================================
+
+ channels = [6, 10, 11, 12, 13, 14]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/hov1.png)
+ ![png](../imgs/hov2.png)
+ ![png](../imgs/hov3.png)
+ ![png](../imgs/hov4.png)
+
+Considerando todos os canais, ou seja, `channel = None`:
+
+=== "Comando"
+
+ ```python linenums="1"
+ channel = None
+
+ gd.plot_diag.time_series_radi(gdf_list,
+ varName=varName,
+ varType=varType,
+ mask='idqc==0 & iuse>=1',
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ vminOMA=vminOMA,
+ vmaxOMA=vmaxOMA,
+ vminSTD=vminSTD,
+ vmaxSTD=vmaxSTD,
+ channel=channel,
+ Clean=False)
+ ```
+
+=== "Resultado"
+
+ ```
+ =============================================================================================================
+ Variable: amsua || type: n19 || Radiance - AMSU-A - NOAA-19. || check: OmF
+ =============================================================================================================
+
+ Preparing data for: Canais de radiancia2024-02-01:00
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-01:06
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-01:12
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-01:18
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-02:00
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-02:06
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-02:12
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+ Preparing data for: Canais de radiancia2024-02-02:18
+ Channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+
+
+ =============================================================================================================
+
+ channels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
+ Calculating for 2024-02-01:00
+ Calculating for 2024-02-01:06
+ Calculating for 2024-02-01:12
+ Calculating for 2024-02-01:18
+ Calculating for 2024-02-02:00
+ Calculating for 2024-02-02:06
+ Calculating for 2024-02-02:12
+ Calculating for 2024-02-02:18
+
+ =============================================================================================================
+
+ Making Graphics...
+ Done!
+ ```
+
+ ![png](../imgs/hov5.png)
+ ![png](../imgs/hov6.png)
+ ![png](../imgs/hov7.png)
+
+#### STATCOUNT
+
+A seguir são apresentadas as opções de figuras obtidas pela função `statcount()`. A função `statcount()` fornece dois tipos de figuras: com `figMap=True` é possível gerar uma sequência de imagens com os pontos geográficos das observações assimiladas, rejeitadas e monitoradas em um período de tempo `dateIni` à `dateFin` com intervalo de tempo `nHour`. Uma outra figura contendo uma série temporal da quantidade de dados assimilados, rejeitados e monitorados é gerada se `figTS=True`. Quando os arquivos utilizados são de **radiância**, deve-se atribuir a variável `channel` o número do canal desejado (`channel=6`), enquanto que, se os dados analisados forem convencionais a variável `channel` deve receber `None` (`channel=None`).
+
+Nos dados de **radiância** a classificação dos dados em assimilado, rejeitado e monitorado é realizada considerando dois tipos de observações monitoradas:
+
+1. monitorado-assimilado: observações que são monitoradas, `iuse = -1`, que poderiam ser assimiladas pois `idqc = 0`.
+2. monitorado-rejeitado: observações que são monitoradas, `iuse = -1`, que poderiam ser rejeitadas pois `idqc != 0`.
+
+A tabela abaixo detalha como a classificação dos dados de **radiância** é realizada.
+
+
+
+| | idqc | iuse |
+| :--- |:---: | :--- |
+| Assimilated | == 0 | >= 1 |
+| Monitored-assimilated | == 0 | >= -1 and < 1 |
+| Monitored-rejected | != 0 | >= -1 and < 1 |
+| Rejected | != 0 | >= 1 |
+
+
+A seguir um exemplo que gera uma sequência de figuras com a geolocalização dos dados de **radiância** assimilados, rejeitados e monitorados (`figMap=True`) em um intervalo de tempo dentro do período de dados carregado no início do notebook.
+
+=== "Comando"
+
+ ```python linenums="1"
+ channel = 6
+ dateIni = '2024020100'
+ dateFin = '2024020118'
+
+ gd.plot_diag.statcount(gdf_list,
+ varName=varName,
+ varType=varType,
+ noiqc=False,
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ channel=channel,
+ figTS=False,
+ figMap=True,
+ markersize=4.80)
+ ```
+
+=== "Resultado"
+
+ ![png](../imgs/statc1.png)
+ ![png](../imgs/statc2.png)
+ ![png](../imgs/statc3.png)
+ ![png](../imgs/statc4.png)
+
+
+Quando `figTS=True` apenas uma figura com a série temporal da quantidade de dados assimilados, rejeitados e monitorados é retornada.
+
+=== "Comando"
+
+ ```python linenums="1"
+ channel = 6
+ dateIni = '2024020100'
+ dateFin = '2024020218'
+
+ gd.plot_diag.statcount(gdf_list,
+ varName=varName,
+ varType=varType,
+ noiqc=False,
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ channel=channel,
+ figTS=True,
+ figMap=False,
+ markersize=4.80)
+
+ channel = 8
+ gd.plot_diag.statcount(gdf_list,
+ varName=varName,
+ varType=varType,
+ noiqc=False,
+ dateIni=dateIni,
+ dateFin=dateFin,
+ nHour=nHour,
+ channel=channel,
+ figTS=True,
+ figMap=False,
+ markersize=4.80)
+ ```
+
+=== "Resultado"
+
+ ![png](../imgs/statc5.png)
+ ![png](../imgs/statc6.png)
+
+Finalizado o uso dos arquivos, feche-os para liberar a memória utilizada:
+
+```python linenums="1"
+for file in gdf_list:
+ if file._FNumber != None:
+ file.close()
+```
+
O `readDiag` é um pacote em desenvolvimento e em constante atualização. Novas funcionalidades serão adicionadas e demonstradas por meio deste notebook.
diff --git a/notebooks/readDiag_Radiancia_tutorial_completo-en_us.ipynb b/notebooks/readDiag_Radiance_tutorial_complete-en_us.ipynb
similarity index 100%
rename from notebooks/readDiag_Radiancia_tutorial_completo-en_us.ipynb
rename to notebooks/readDiag_Radiance_tutorial_complete-en_us.ipynb
diff --git a/notebooks/readDiag_tutorial_complete-en_us.ipynb b/notebooks/readDiag_tutorial_complete-en_us.ipynb
index 07cdb8a..19565cb 100644
--- a/notebooks/readDiag_tutorial_complete-en_us.ipynb
+++ b/notebooks/readDiag_tutorial_complete-en_us.ipynb
@@ -3131,7 +3131,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.6"
+ "version": "3.9.18"
}
},
"nbformat": 4,
diff --git a/notebooks/readDiag_tutorial_completo-pt_br.ipynb b/notebooks/readDiag_tutorial_completo-pt_br.ipynb
index f1830a9..a7ae304 100644
--- a/notebooks/readDiag_tutorial_completo-pt_br.ipynb
+++ b/notebooks/readDiag_tutorial_completo-pt_br.ipynb
@@ -3127,7 +3127,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.6"
+ "version": "3.9.18"
}
},
"nbformat": 4,
diff --git a/notebooks/readDiag_tutorial_simple-en_us.ipynb b/notebooks/readDiag_tutorial_simple-en_us.ipynb
index f18ec9a..7f99618 100644
--- a/notebooks/readDiag_tutorial_simple-en_us.ipynb
+++ b/notebooks/readDiag_tutorial_simple-en_us.ipynb
@@ -2828,7 +2828,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.6"
+ "version": "3.9.18"
}
},
"nbformat": 4,
diff --git a/notebooks/readDiag_tutorial_simples-pt_br.ipynb b/notebooks/readDiag_tutorial_simples-pt_br.ipynb
index 759fc02..da06bcd 100644
--- a/notebooks/readDiag_tutorial_simples-pt_br.ipynb
+++ b/notebooks/readDiag_tutorial_simples-pt_br.ipynb
@@ -1984,7 +1984,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.6"
+ "version": "3.9.18"
}
},
"nbformat": 4,