-
Notifications
You must be signed in to change notification settings - Fork 58
scikit fda map
Carlos Ramos Carreño edited this page May 7, 2019
·
25 revisions
Map of the status of the features in scikit-fda:
custom_mark10
digraph G { skfda -> representation skfda -> preprocessing skfda -> datasets skfda -> ml skfda -> exploratory skfda -> inference skfda -> "time series" skfda -> multivariate skfda -> "space temporal"
dense [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.grid.FDataGrid.html#skfda.grid.FDataGrid"]
representation -> dense
representation -> incomplete
incomplete -> sparse
incomplete -> longitudinal
basis [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.FDataBasis.html#skfda.FDataBasis"]
representation -> basis
Fourier [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.basis.Fourier.html#skfda.basis.Fourier"]
basis -> Fourier
BSpline [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.basis.BSpline.html#skfda.basis.BSpline"]
basis -> BSpline
monomial [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.basis.Monomial.html#skfda.basis.Monomial"]
basis -> monomial
basis -> wavelet
preprocessing -> derivatives
"symmetric difference" [style=filled,color=lightgrey,label="symmetric difference (derivative method, 1d)"]
derivatives -> "symmetric difference"
preprocessing -> registration
"shift registration" [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.registration.shift_registration.html#skfda.registration.shift_registration"]
registration -> "shift registration"
"landmark shift" [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.registration.landmark_shift.html#skfda.registration.landmark_shift"]
registration -> "landmark shift"
"landmark registration" [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.registration.landmark_registration.html#skfda.registration.landmark_registration"]
registration -> "landmark registration"
"elastic registration" [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.registration.elastic_registration.html#skfda.registration.elastic_registration"]
registration -> "elastic registration"
"MSE decomposition" [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.registration.mse_decomposition.html#skfda.registration.mse_decomposition"]
registration -> "MSE decomposition"
preprocessing -> smoothing
smoothing -> kernel
exploratory -> "dimensionality reduction"
exploratory -> visualization
exploratory -> depth
exploratory -> metrics
exploratory -> outliers
exploratory -> stats
FM [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.depth_measures.fraiman_muniz_depth.html#skfda.depth_measures.fraiman_muniz_depth"]
depth -> FM
BD [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.depth_measures.band_depth.html#skfda.depth_measures.band_depth"]
depth -> BD
MBD [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.depth_measures.modified_band_depth.html#skfda.depth_measures.modified_band_depth"]
depth -> MBD
depth -> "h-mode"
depth -> "random projections"
depth -> median
boxplot [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/fdata_boxplot.html"]
depth -> boxplot
depth -> "depth outliers"
depth -> "DD plot"
"dimensionality reduction" -> projection
"dimensionality reduction" -> "variable selection"
projection -> FPCA
projection -> FPLS
"variable selection" -> RKHS
"variable selection" -> MH
"variable selection" -> RMH
"variable selection" -> mRMR
"variable selection" -> wrapper
wrapper -> Fwd
wrapper -> Bwd
Lp [style=filled,color=lightgrey,URL="https://fda.readthedocs.io/en/latest/modules/autosummary/skfda.metrics.lp_distance.html#skfda.metrics.lp_distance"]
metrics -> Lp
Linf [label="L∞"]
metrics -> Linf
outliers -> "MS plot"
outliers -> outliergram
visualization -> graphs
visualization -> boxplot
visualization -> "DD plot"
visualization -> "MS plot"
visualization -> outliergram
stats -> mean
stats -> median
stats -> std
stats -> gmean
stats -> trimmed
stats -> robust
inference -> intervals
inference -> tests
intervals -> bootstrap
meanTest [label="mean"]
tests -> meanTest
tests -> ANOVA
tests -> homogeneity
ml -> clustering
ml -> regression
ml -> classification
clustering -> "K-means"
clustering -> "Fuzzy K-means"
clustering -> hierarchical
regression -> linear
regression -> nonparametric
regression -> GLM
regression -> PCA
regression -> PLS
regression -> logistic
regression -> penalized
KnnRegression [label="K-nn"]
regression -> KnnRegression
KnnClass [label="K-nn"]
classification -> KnnClass
classification -> centroid
}
custom_mark10
The map is also being done as an Euler diagram:
euler_all digraph G {
subgraph cluster_skfda {
style=rounded
label="scikit-fda";
fontsize = 40;
subgraph cluster_top {
style=invis
fontsize = 20;
subgraph cluster_exploratory {
style=rounded
label="exploratory";
outliers[shape=box,style=rounded]
dimensionality[shape=box,style=rounded,label="dimensionality reduction"]
depth[shape=box,style=rounded]
visualization[shape=box,style=rounded]
statistics[shape=box,style=rounded]
}
subgraph cluster_representation {
style="rounded"
label="representation";
basis[shape=box,style="rounded"]
incomplete[shape=box,style="rounded"]
dense[shape=box,style="rounded"]
}
}
subgraph cluster_bottom {
style=invis
fontsize = 20;
subgraph cluster_ml {
style=rounded
label="machine learning";
clustering[shape=box,style=rounded]
classification[shape=box,style=rounded]
regression[shape=box,style=rounded]
}
subgraph cluster_inference {
style=rounded
label="inference";
intervals[shape=box,style=rounded]
tests[shape=box,style=rounded]
}
subgraph cluster_preprocessing {
style=rounded
label="preprocessing";
derivatives[shape=box,style=rounded]
distances[shape=box,style=rounded]
registration[shape=box,style=rounded]
smoothing[shape=box,style=rounded]
}
}
dense -> smoothing[style = invis]
} } euler_all