This repository has been archived by the owner on Oct 13, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
do_fmnist.py
51 lines (41 loc) · 1.88 KB
/
do_fmnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import tensorflow as tf
from argparse import ArgumentParser
from libs.DataHandler import MNIST
from libs.ExperimentWrapper import ExperimentWrapper
from libs.constants import add_standard_arguments, ALARM_SMALL, ALARM_BIG
# Reduce the hunger of TF when we're training on a GPU
try:
tf.config.experimental.set_memory_growth(tf.config.list_physical_devices("GPU")[0], True)
except IndexError:
tf.config.run_functions_eagerly(True)
pass # No GPUs available
# Configuration
this_parse = ArgumentParser(description="Train DA3D on MNIST")
add_standard_arguments(this_parse)
this_args = this_parse.parse_args()
experiment_config = [
MNIST(
random_state=this_args.random_seed, y_normal=list(range(0, 5)), y_anomalous=list(range(5, 10)),
n_train_anomalies=this_args.n_train_anomalies, p_pollution=this_args.p_contamination, special_name="fashion"
),
]
DIM_TARGET = None
DIM_ALARM = ALARM_BIG
BATCH_SIZE = 256
SAMPLE_DEV = this_args.sample_stddev
if __name__ == '__main__':
this_experiment = ExperimentWrapper(
save_prefix="FMNIST", data_setup=experiment_config, p_contamination=this_args.p_contamination,
random_seed=this_args.random_seed, out_path=this_args.model_path, is_override=this_args.is_override
)
dagmm_conf = {
"comp_hiddens": [60, 30, 10, 1], "comp_activation": tf.nn.tanh,
"est_hiddens": [10, 4], "est_dropout_ratio": 0.5, "est_activation": tf.nn.tanh,
"learning_rate": this_args.learning_rate, "epoch_size": this_args.n_epochs, "minibatch_size": BATCH_SIZE
}
this_experiment.do_everything(
dim_target=DIM_TARGET, dim_alarm=DIM_ALARM,
learning_rate=this_args.learning_rate, batch_size=BATCH_SIZE, n_epochs=this_args.n_epochs,
out_path=this_args.result_path, dagmm_conf=dagmm_conf, evaluation_split=this_args.data_split,
stddev_anomalies=SAMPLE_DEV, plot_freq=this_args.plot_freq
)