-
Notifications
You must be signed in to change notification settings - Fork 72
/
references.bib
491 lines (447 loc) · 15.5 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
% references.bib
% Python Scientific Computing Stack (NumPy, etc.) =============================
% Python
@book{vanrossum2010python,
title = {The python language reference},
author = {VanRossum, Guido and Drake, Fred L},
year = {2010},
publisher = {Python software foundation Amsterdam, Netherlands},
url = {https://docs.python.org/3/}
}
% IPython
@Article{PER-GRA:2007,
Author = {P\'erez, Fernando and Granger, Brian E.},
Title = {{IP}ython: a System for Interactive Scientific Computing},
Journal = {Computing in Science and Engineering},
Volume = {9},
Number = {3},
Pages = {21--29},
month = {may},
year = {2007},
url = "https://ipython.org",
ISSN = "1521-9615",
doi = {10.1109/MCSE.2007.53},
publisher = {IEEE Computer Society},
}
% Jupyter Notebooks
@Article{jupyter,
Title = {Jupyter Notebooks–-a publishing format for reproducible computational workflows},
Authors = {Thomas Kluyver, Benjamin Ragan-Kelley, Fernando P\'{e}rez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Dami\'{a}n Avila, Safia Abdalla, Carol Willing, Jupyter Development Team},
Pages = {87--90},
DOI = {10.3233/978-1-61499-649-1-87}
}
% NumPy
@book{oliphant2006guide,
title = {A guide to NumPy},
author = {Oliphant, Travis E},
volume = {1},
year = {2006},
publisher = {Trelgol Publishing USA}
}
@misc{ascher2001numerical,
title = {Numerical python},
author = {Ascher, David and Dubois, Paul F and Hinsen, Konrad and Hugunin, Jim and Oliphant, Travis and others},
year = {2001},
publisher = {Citeseer}
}
@article{oliphant2007python,
title = {Python for scientific computing},
author = {Oliphant, Travis E},
journal = {Computing in Science \& Engineering},
volume = {9},
number = {3},
year = {2007},
publisher = {IEEE}
}
% SciPy
@Misc{scipy,
author = {Eric Jones and Travis Oliphant and Pearu Peterson and others},
title = {{SciPy}: Open source scientific tools for {Python}},
year = {2001--},
url = "http://www.scipy.org/",
note = {[Online; accessed 11/05/18]}
}
% Matplotlib
@Article{Hunter:2007,
Author = {Hunter, J. D.},
Title = {Matplotlib: A 2D graphics environment},
Journal = {Computing In Science \& Engineering},
Volume = {9},
Number = {3},
Pages = {90--95},
abstract = {Matplotlib is a 2D graphics package used for Python
for application development, interactive scripting, and
publication-quality image generation across user
interfaces and operating systems.},
publisher = {IEEE COMPUTER SOC},
doi = {10.1109/MCSE.2007.55},
year = 2007
}
% SymPy
@article{meurer2017sympy,
title={SymPy: symbolic computing in Python},
author={Meurer, Aaron and Smith, Christopher P and Paprocki, Mateusz and {C}ert{\'\i}k, Ondrej and Kirpichev, Sergey B and Rocklin, Matthew and Kumar, AMiT and Ivanov, Sergiu and Moore, Jason K and Singh, Sartaj and others},
journal={PeerJ Computer Science},
volume={3},
pages={e103},
year={2017},
publisher={PeerJ Inc.}
}
% Pandas
@InProceedings{mckinney-proc-scipy-2010,
author = {Wes McKinney},
title = {Data Structures for Statistical Computing in Python},
booktitle = {Proceedings of the 9th Python in Science Conference},
pages = {51--56},
year = {2010},
editor = {St\'efan van der Walt and Jarrod Millman}
}
@article{mckinney2011pandas,
title={pandas: a foundational Python library for data analysis and statistics},
author={McKinney, Wes},
journal={Python for High Performance and Scientific Computing},
pages={1--9},
year={2011}
}
% Specific Labs ===============================================================
# Data Visualization
@online{glue,
author = {Beaumont, Chris and Robitaille, Thomas and Borkin, Michelle},
title = {Glue Documentation},
year = {2014},
url = {http://www.glueviz.org/en/stable/},
urldate = {2014-10-05}
}
@online{piecharts,
author = {Gabrielle, Bruce},
title = {Why {T}ufte is flat-out wrong about pie charts},
year = 2013,
url = {http://speakingppt.com/2013/03/18/why-tufte-is-flat-out-wrong-about-pie-charts/},
urldate = {2014-10-05}
}
@BOOK{Tufte1990,
title = {Envisioning Information},
publisher = {Graphics Press, Cheshire, Connecticut},
year = {1990},
author = {Tufte, Edward R. },
pages = {126},
isbn = {978-096139211-6},
}
@BOOK{Tufte2001,
title = {The Visual Display of Quantitative Information},
publisher = {Graphics Press, Cheshire, Connecticut},
year = {2001},
author = {Tufte, Edward R. },
edition = {Second},
pages = {197},
isbn = {978-0-9613921-4-7},
}
% Image Segmentation
@ARTICLE{Shi2000,
author = {Shi, Jianbo and Malik, Jitendra},
title = {Normalized cuts and image segmentation},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
year = {2000},
volume = {22},
pages = {888-905},
number = {8},
url = {http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf}
}
# Least Squares, SVD / Image Compression, Conditioning / Stability
@book{Trefethen1997,
AUTHOR = {Trefethen, Lloyd N. and Bau, III, David},
TITLE = {Numerical linear algebra},
PUBLISHER = {Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA},
YEAR = {1997},
PAGES = {xii+361},
ISBN = {0-89871-361-7},
MRCLASS = {65-01 (65-02 65Fxx)},
MRNUMBER = {1444820 (98k:65002)},
MRREVIEWER = {Moody T. Chu},
DOI = {10.1137/1.9780898719574},
URL = {http://dx.doi.org/10.1137/1.9780898719574},
}
@article{Trefethen1998,
author = {Trefethen, L. N.},
year = {1998},
title = {Maxims About Numerical Mathematics, Computers, Science, and
Life},
journal = {SIAM News},
url = {https://people.maths.ox.ac.uk/~trefethen/publication/PDF/1998_76.pdf}
}
@book{quarteroni2010numerical,
title={Numerical mathematics},
author={Quarteroni, Alfio and Sacco, Riccardo and Saleri, Fausto},
volume={37},
year={2010},
publisher={Springer Science \& Business Media}
}
% SVD / Image Compression
@book{demmel1997applied,
title = {Applied numerical linear algebra},
author = {Demmel, James W},
volume = {56},
year = {1997},
publisher = {Siam}
}
% Facial Recognition
@article {muller2004singular,
AUTHOR = {Muller, Neil and Magaia, Lourenco and Herbst, B. M.},
TITLE = {Singular value decomposition, eigenfaces, and 3{D} reconstructions},
JOURNAL = {SIAM Rev.},
FJOURNAL = {SIAM Review},
VOLUME = {46},
YEAR = {2004},
NUMBER = {3},
PAGES = {518--545},
ISSN = {0036-1445},
MRCLASS = {65F15 (68U10 94A08)},
MRNUMBER = {2115060},
MRREVIEWER = {A. Bultheel},
DOI = {10.1137/S0036144501387517},
URL = {https://doi.org/10.1137/S0036144501387517},
}
% Differentiation
@book{kiusalaas2013numerical,
title = {Numerical methods in engineering with Python 3},
author = {Kiusalaas, Jaan},
year = {2013},
publisher = {Cambridge university press}
}
% Newton's Method
@book{heath2002scientific,
title = {Scientific computing},
author = {Heath, Michael T},
year = {2002},
publisher = {McGraw-Hill New York}
}
@book{atkinson1991introduction,
title={An Introduction to Numerical Analysis},
author={Atkinson, K.},
isbn={9780471624899},
lccn={88301718},
url={https://books.google.com/books?id=wbCjEAAAQBAJ},
year={1991},
publisher={Wiley}
}
% PageRank
@book{newman2010networks,
title = {Networks: an introduction},
author = {Newman, Mark},
year = {2010},
publisher = {Oxford university press}
}
% Arnoldi
@article{cipra2000,
author = {Cipra, Barry A.},
title = {The best of the 20th century: editors name top 10 algorithms},
journal = {Siam news},
volume = {33},
number = {4},
year = 2000,
month = {16 May}
}
% Markov Chains
@inproceedings{von2006five,
title = {The five greatest applications of Markov chains},
author = {Von Hilgers, Philipp and Langville, Amy N},
booktitle = {Proceedings of the Markov Anniversary Meeting, Boston Press, Boston, MA},
year = {2006},
organization={Citeseer}
}
@book{geisel1960green,
title = {Green eggs and ham},
author = {Geisel, Theodor Seuss},
year = {1960},
publisher = {Beginner Books}
}
@inproceedings{bird2004nltk,
title = {NLTK: the natural language toolkit},
author = {Bird, Steven and Loper, Edward},
booktitle = {Proceedings of the ACL 2004 on Interactive poster and demonstration sessions},
pages = {31},
year = {2004},
organization = {Association for Computational Linguistics}
}
@book{artRL2023hu,
author = {Hu, Michael},
title = {The Art of Reinforcement Learning: Fundamentals, Mathematics, and Implementations with Python},
year = {2023},
publisher = {Apress},
}
% Reinforcement Learning for Policy Function Iteration Lab and Q-learning algorithm in Gym lab
@book{sutton2018reinforcement,
author = {Sutton, Richard S. and Barto, Andrew G.},
title = {Reinforcement learning: An introduction (2nd edition)},
year = {2018},
publisher = {MIT Press},
}
% Another book for Reinforcement Learning
@book{brunton2022data,
author = {Brunton, Steven L. and Kutz, J. Nathan},
title = {Data-driven science and engineering: Machine learning, Dynamical Systems, and Control (2nd edition)},
year = {2022},
publisher = {Cambridge University Press},
}
% Simplex (?) -----------------------------------------------------------------
@INPROCEEDINGS{Klee1972,
author = {Klee, Victor and Minty, George J.},
title = {How good is the simplex algorithm?},
booktitle = {Inequalities},
year = {1972},
volume = {3},
pages = {159-175},
publisher = {Academic Press}
}
@ARTICLE{Nash2000,
author = {Nash, J.C.},
title = {The (Dantzig) simplex method for linear programming},
journal = {Computing in Science and Engineering},
year = {2000},
volume = {2},
pages = {29-31},
number = {1},
doi = {10.1109/5992.814654}
}
% Finite Volume
@book{leveque2002,
AUTHOR = {LeVeque, Randall J.},
TITLE = {Finite volume methods for hyperbolic problems},
SERIES = {Cambridge Texts in Applied Mathematics},
PUBLISHER = {Cambridge University Press, Cambridge},
YEAR = {2002},
PAGES = {xx+558},
ISBN = {0-521-81087-6; 0-521-00924-3},
MRCLASS = {65-01 (65M06 74S30 76M12)},
MRNUMBER = {1925043},
MRREVIEWER = {Serge Piperno},
DOI = {10.1017/CBO9780511791253},
URL = {https://doi.org/10.1017/CBO9780511791253},
}
% Anisotropic Diffusion
@TECHREPORT{Kim2009,
author = {Seongjai Kim},
title = {Edge-Preserving Noise Removal, Part I: Second Order Anisotropic Diffusion.},
institution = {University of Kentucky Department of Mathematics},
year = {2009}
}
@TECHREPORT{Perona1988,
author = {Perona, Pietro and Malik, Jitendra},
title = {Scale-space and edge detection using anisotropic diffusion},
institution = {EECS Department, University of California, Berkeley},
year = {1988},
number = {UCB/CSD-88-483},
month = {Dec},
abstract = {The scale-space technique introduced by Witkin involves
generating coarser resolution images by convolving the original image
with a Gaussian kernel, or equivalently by using the original image as
the initial condition of a diffusion process. This approach has a major
drawback; it is difficult to obtain accurately the locations of the
'semantically meaningful' edges at coarse scales. In this paper we
suggest a new definition of scale-space, and introduce a class of
algorithms that realize it using a diffusion process. The diffusion
coefficient is chosen to vary spatially in such a way as to encourage
intra-region smoothing in preference to inter-region smoothing. It
is shown that the 'No new maxima should be generated at coarse scales'
property of conventional scale space is preserved. As the region
boundaries in our approach remain sharp, we obtain a high quality
edge detector which successfully exploits global information. Experimental
results are shown on a number of images. The algorithm involves simple,
local operations replicated over the image making parallel hardware
implementation feasible.},
url = {http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/5318.html}
}
% Scikit-learn ----------------------------------------------------------------
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@inproceedings{sklearn_api,
author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and
Fabian Pedregosa and Andreas Mueller and Olivier Grisel and
Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort
and Jaques Grobler and Robert Layton and Jake VanderPlas and
Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux},
title = {{API} design for machine learning software: experiences from the scikit-learn project},
booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine Learning},
year = {2013},
pages = {108--122},
}
@article{schoenfeld2018preprocessor,
title={Preprocessor Selection for Machine Learning Pipelines},
author={Schoenfeld, Brandon and Giraud-Carrier, Christophe and Poggemann, Mason and Christensen, Jarom and Seppi, Kevin},
journal={arXiv preprint arXiv:1810.09942},
year={2018}
}
% Deep Learning ---------------------------------------------------------------
@article{cifar10,
title={Learning Multiple Layers of Features from Tiny Images},
author={Krizhevsky, Alex},
URL = {https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf},
year={2009}
}
@article{goodfellow2015advesarial,
title={Explaining and Harnessing Adversarial Examples},
author={Goodfellow, Ian J. and Shlens, Jonathon and Szegedy, Christian},
URL = {https://arxiv.org/pdf/1412.6572.pdf},
year={2015}
}
@article{goodfellow2017physical,
title={Adversarial Examples in the Physical World},
author={Goodfellow, Ian J. and Kurakin, Alexey and Bengio, Samy},
URL = {https://arxiv.org/pdf/1607.02533.pdf},
year={2017}
}
% NOT SURE ====================================================================
@online{sparkplots,
author = {Edgewall Software},
title = {Sparkplot: creating sparklines in {P}ython with matplotlib},
year = 2009,
url = {http://sparkplot.org},
urldate = {2014-10-05}
}
@online{sparklineshtml,
author = {Gregorio, Joe},
title = {Sparklines in data: {URI}s in {P}ython},
year = 2005,
url = {http://bitworking.org/news/Sparklines_in_data_URIs_in_Python},
urldate = {2014-10-05}
}
@book{dijkstra1976discipline,
title = {A discipline of programming},
author = {Dijkstra, Edsger Wybe and Dijkstra, Edsger Wybe and Dijkstra, Edsger Wybe and Informaticien, Etats-Unis and Dijkstra, Edsger Wybe},
volume = {1},
year = {1976},
publisher= {prentice-hall Englewood Cliffs}
}
@BOOK{Brualdi2010,
title = {Introductory combinatorics},
publisher = {Pearson Prentice Hall, Upper Saddle River, NJ},
year = {2010},
author = {Brualdi, Richard A.},
pages = {xii+605},
edition = {Fifth},
isbn = {978-0-13-602040-0; 0-13-602040-2},
mrclass = {05-01},
mrnumber = {2655770 (2012a:05001)},
mrreviewer = {Jonathan Cutler}
}
@BOOK{trefethen2005,
AUTHOR = {Trefethen, Lloyd N. and Embree, Mark},
TITLE = {Spectra and pseudospectra},
NOTE = {The behavior of nonnormal matrices and operators},
PUBLISHER = {Princeton University Press, Princeton, NJ},
YEAR = {2005},
PAGES = {xviii+606},
ISBN = {978-0-691-11946-5; 0-691-11946-5},
MRCLASS = {15-02 (15A18 47A10 47A50)},
MRNUMBER = {2155029 (2006d:15001)},
MRREVIEWER = {David Scott Watkins}
}