-
Notifications
You must be signed in to change notification settings - Fork 73
/
edit_t2m.py
195 lines (154 loc) · 7.57 KB
/
edit_t2m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
from os.path import join as pjoin
import torch
import torch.nn.functional as F
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE, LengthEstimator
from options.eval_option import EvalT2MOptions
from utils.get_opt import get_opt
from utils.fixseed import fixseed
from visualization.joints2bvh import Joint2BVHConvertor
from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion
from utils.paramUtil import t2m_kinematic_chain
import numpy as np
from gen_t2m import load_vq_model, load_res_model, load_trans_model
if __name__ == '__main__':
parser = EvalT2MOptions()
opt = parser.parse()
fixseed(opt.seed)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
torch.autograd.set_detect_anomaly(True)
dim_pose = 251 if opt.dataset_name == 'kit' else 263
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
model_dir = pjoin(root_dir, 'model')
result_dir = pjoin('./editing', opt.ext)
joints_dir = pjoin(result_dir, 'joints')
animation_dir = pjoin(result_dir, 'animations')
os.makedirs(joints_dir, exist_ok=True)
os.makedirs(animation_dir,exist_ok=True)
model_opt_path = pjoin(root_dir, 'opt.txt')
model_opt = get_opt(model_opt_path, device=opt.device)
#######################
######Loading RVQ######
#######################
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
vq_opt = get_opt(vq_opt_path, device=opt.device)
vq_opt.dim_pose = dim_pose
vq_model, vq_opt = load_vq_model(vq_opt)
model_opt.num_tokens = vq_opt.nb_code
model_opt.num_quantizers = vq_opt.num_quantizers
model_opt.code_dim = vq_opt.code_dim
#################################
######Loading R-Transformer######
#################################
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
res_opt = get_opt(res_opt_path, device=opt.device)
res_model = load_res_model(res_opt, vq_opt, opt)
assert res_opt.vq_name == model_opt.vq_name
#################################
######Loading M-Transformer######
#################################
t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')
t2m_transformer.eval()
vq_model.eval()
res_model.eval()
res_model.to(opt.device)
t2m_transformer.to(opt.device)
vq_model.to(opt.device)
##### ---- Data ---- #####
max_motion_length = 196
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
def inv_transform(data):
return data * std + mean
### We provided an example source motion (from 'new_joint_vecs') for editing. See './example_data/000612.mp4'###
motion = np.load(opt.source_motion)
m_length = len(motion)
motion = (motion - mean) / std
if max_motion_length > m_length:
motion = np.concatenate([motion, np.zeros((max_motion_length - m_length, motion.shape[1])) ], axis=0)
motion = torch.from_numpy(motion)[None].to(opt.device)
prompt_list = []
length_list = []
if opt.motion_length == 0:
opt.motion_length = m_length
print("Using default motion length.")
prompt_list.append(opt.text_prompt)
length_list.append(opt.motion_length)
if opt.text_prompt == "":
raise "Using an empty text prompt."
token_lens = torch.LongTensor(length_list) // 4
token_lens = token_lens.to(opt.device).long()
m_length = token_lens * 4
captions = prompt_list
print_captions = captions[0]
_edit_slice = opt.mask_edit_section
edit_slice = []
for eds in _edit_slice:
_start, _end = eds.split(',')
_start = eval(_start)
_end = eval(_end)
edit_slice.append([_start, _end])
sample = 0
kinematic_chain = t2m_kinematic_chain
converter = Joint2BVHConvertor()
with torch.no_grad():
tokens, features = vq_model.encode(motion)
### build editing mask, TOEDIT marked as 1 ###
edit_mask = torch.zeros_like(tokens[..., 0])
seq_len = tokens.shape[1]
for _start, _end in edit_slice:
if isinstance(_start, float):
_start = int(_start*seq_len)
_end = int(_end*seq_len)
else:
_start //= 4
_end //= 4
edit_mask[:, _start: _end] = 1
print_captions = f'{print_captions} [{_start*4/20.}s - {_end*4/20.}s]'
edit_mask = edit_mask.bool()
for r in range(opt.repeat_times):
print("-->Repeat %d"%r)
with torch.no_grad():
mids = t2m_transformer.edit(
captions, tokens[..., 0].clone(), m_length//4,
timesteps=opt.time_steps,
cond_scale=opt.cond_scale,
temperature=opt.temperature,
topk_filter_thres=opt.topkr,
gsample=opt.gumbel_sample,
force_mask=opt.force_mask,
edit_mask=edit_mask.clone(),
)
if opt.use_res_model:
mids = res_model.generate(mids, captions, m_length//4, temperature=1, cond_scale=2)
else:
mids.unsqueeze_(-1)
pred_motions = vq_model.forward_decoder(mids)
pred_motions = pred_motions.detach().cpu().numpy()
source_motions = motion.detach().cpu().numpy()
data = inv_transform(pred_motions)
source_data = inv_transform(source_motions)
for k, (caption, joint_data, source_data) in enumerate(zip(captions, data, source_data)):
print("---->Sample %d: %s %d"%(k, caption, m_length[k]))
animation_path = pjoin(animation_dir, str(k))
joint_path = pjoin(joints_dir, str(k))
os.makedirs(animation_path, exist_ok=True)
os.makedirs(joint_path, exist_ok=True)
joint_data = joint_data[:m_length[k]]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
source_data = source_data[:m_length[k]]
soucre_joint = recover_from_ric(torch.from_numpy(source_data).float(), 22).numpy()
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k]))
_, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100)
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k]))
_, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k]))
ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k]))
source_save_path = pjoin(animation_path, "sample%d_source_len%d.mp4"%(k, m_length[k]))
plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=print_captions, fps=20)
plot_3d_motion(save_path, kinematic_chain, joint, title=print_captions, fps=20)
plot_3d_motion(source_save_path, kinematic_chain, soucre_joint, title='None', fps=20)
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint)
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint)