forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
executable file
·171 lines (131 loc) · 6.48 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import itertools
import json
from multiprocessing import cpu_count
import numpy as np
import progressbar
import tensorflow as tf
import tensorflow.compat.v1 as tfv1
from ds_ctcdecoder import ctc_beam_search_decoder_batch, Scorer
from six.moves import zip
from util.config import Config, initialize_globals
from util.evaluate_tools import calculate_report
from util.feeding import create_dataset
from util.flags import create_flags, FLAGS
from util.logging import log_error, log_progress, create_progressbar
def sparse_tensor_value_to_texts(value, alphabet):
r"""
Given a :class:`tf.SparseTensor` ``value``, return an array of Python strings
representing its values, converting tokens to strings using ``alphabet``.
"""
return sparse_tuple_to_texts((value.indices, value.values, value.dense_shape), alphabet)
def sparse_tuple_to_texts(sp_tuple, alphabet):
indices = sp_tuple[0]
values = sp_tuple[1]
results = [''] * sp_tuple[2][0]
for i, index in enumerate(indices):
results[index[0]] += alphabet.string_from_label(values[i])
# List of strings
return results
def evaluate(test_csvs, create_model, try_loading):
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta,
FLAGS.lm_binary_path, FLAGS.lm_trie_path,
Config.alphabet)
test_csvs = FLAGS.test_files.split(',')
test_sets = [create_dataset([csv], batch_size=FLAGS.test_batch_size) for csv in test_csvs]
iterator = tfv1.data.Iterator.from_structure(tfv1.data.get_output_types(test_sets[0]),
tfv1.data.get_output_shapes(test_sets[0]),
output_classes=tfv1.data.get_output_classes(test_sets[0]))
test_init_ops = [iterator.make_initializer(test_set) for test_set in test_sets]
batch_wav_filename, (batch_x, batch_x_len), batch_y = iterator.get_next()
# One rate per layer
no_dropout = [None] * 6
logits, _ = create_model(batch_x=batch_x,
batch_size=FLAGS.test_batch_size,
seq_length=batch_x_len,
dropout=no_dropout)
# Transpose to batch major and apply softmax for decoder
transposed = tf.nn.softmax(tf.transpose(logits, [1, 0, 2]))
loss = tfv1.nn.ctc_loss(labels=batch_y,
inputs=logits,
sequence_length=batch_x_len)
tfv1.train.get_or_create_global_step()
# Get number of accessible CPU cores for this process
try:
num_processes = cpu_count()
except NotImplementedError:
num_processes = 1
# Create a saver using variables from the above newly created graph
saver = tfv1.train.Saver()
with tfv1.Session(config=Config.session_config) as session:
# Restore variables from training checkpoint
loaded = try_loading(session, saver, 'best_dev_checkpoint', 'best validation')
if not loaded:
loaded = try_loading(session, saver, 'checkpoint', 'most recent')
if not loaded:
log_error('Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(FLAGS.checkpoint_dir))
exit(1)
def run_test(init_op, dataset):
wav_filenames = []
losses = []
predictions = []
ground_truths = []
bar = create_progressbar(prefix='Test epoch | ',
widgets=['Steps: ', progressbar.Counter(), ' | ', progressbar.Timer()]).start()
log_progress('Test epoch...')
step_count = 0
# Initialize iterator to the appropriate dataset
session.run(init_op)
# First pass, compute losses and transposed logits for decoding
while True:
try:
batch_wav_filenames, batch_logits, batch_loss, batch_lengths, batch_transcripts = \
session.run([batch_wav_filename, transposed, loss, batch_x_len, batch_y])
except tf.errors.OutOfRangeError:
break
decoded = ctc_beam_search_decoder_batch(batch_logits, batch_lengths, Config.alphabet, FLAGS.beam_width,
num_processes=num_processes, scorer=scorer)
predictions.extend(d[0][1] for d in decoded)
ground_truths.extend(sparse_tensor_value_to_texts(batch_transcripts, Config.alphabet))
wav_filenames.extend(wav_filename.decode('UTF-8') for wav_filename in batch_wav_filenames)
losses.extend(batch_loss)
step_count += 1
bar.update(step_count)
bar.finish()
wer, cer, samples = calculate_report(wav_filenames, ground_truths, predictions, losses)
mean_loss = np.mean(losses)
# Take only the first report_count items
report_samples = itertools.islice(samples, FLAGS.report_count)
print('Test on %s - WER: %f, CER: %f, loss: %f' %
(dataset, wer, cer, mean_loss))
print('-' * 80)
for sample in report_samples:
print('WER: %f, CER: %f, loss: %f' %
(sample.wer, sample.cer, sample.loss))
print(' - wav: file://%s' % sample.wav_filename)
print(' - src: "%s"' % sample.src)
print(' - res: "%s"' % sample.res)
print('-' * 80)
return samples
samples = []
for csv, init_op in zip(test_csvs, test_init_ops):
print('Testing model on {}'.format(csv))
samples.extend(run_test(init_op, dataset=csv))
return samples
def main(_):
initialize_globals()
if not FLAGS.test_files:
log_error('You need to specify what files to use for evaluation via '
'the --test_files flag.')
exit(1)
from DeepSpeech import create_model, try_loading # pylint: disable=cyclic-import
samples = evaluate(FLAGS.test_files.split(','), create_model, try_loading)
if FLAGS.test_output_file:
# Save decoded tuples as JSON, converting NumPy floats to Python floats
json.dump(samples, open(FLAGS.test_output_file, 'w'), default=float)
if __name__ == '__main__':
create_flags()
tf.app.flags.DEFINE_string('test_output_file', '', 'path to a file to save all src/decoded/distance/loss tuples')
tfv1.app.run(main)