forked from qfgaohao/pytorch-ssd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_ssd_live_caffe2.py
105 lines (91 loc) · 3.6 KB
/
run_ssd_live_caffe2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import vision.utils.box_utils_numpy as box_utils
from vision.utils.misc import Timer
from vision.ssd.config.mobilenetv1_ssd_config import specs, center_variance, size_variance
import cv2
import sys
from caffe2.python import core, workspace, net_printer
import numpy as np
priors = box_utils.generate_ssd_priors(specs, 300)
print('priors.shape', priors.shape)
def load_model(init_net_path, predict_net_path):
with open(init_net_path, "rb") as f:
init_net = f.read()
with open(predict_net_path, "rb") as f:
predict_net = f.read()
p = workspace.Predictor(init_net, predict_net)
return p
def predict(width, height, confidences, boxes, prob_threshold, iou_threshold=0.5, top_k=-1):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = box_utils.hard_nms(box_probs,
iou_threshold=iou_threshold,
top_k=top_k,
)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4]
if len(sys.argv) < 2:
print('Usage: python run_ssd_live_caffe2.py init_net predict_net')
sys.exit(0)
init_net_path = sys.argv[1]
predict_net_path = sys.argv[2]
label_path = sys.argv[3]
class_names = [name.strip() for name in open(label_path).readlines()]
predictor = load_model(init_net_path, predict_net_path)
if len(sys.argv) >= 5:
cap = cv2.VideoCapture(sys.argv[4]) # capture from file
else:
cap = cv2.VideoCapture(0) # capture from camera
cap.set(3, 1920)
cap.set(4, 1080)
timer = Timer()
while True:
ret, orig_image = cap.read()
if orig_image is None:
continue
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (300, 300))
image = image.astype(np.float32)
image = (image - 127) / 128
image = np.transpose(image, [2, 0, 1])
image = np.expand_dims(image, axis=0)
timer.start()
confidences, boxes = predictor.run({'0': image})
interval = timer.end()
print('Inference Time: {:.2f}s.'.format(interval))
timer.start()
boxes, labels, probs = predict(orig_image.shape[1], orig_image.shape[0], confidences, boxes, 0.55)
interval = timer.end()
print('NMS Time: {:.2f}s, Detect Objects: {:d}.'.format(interval, labels.shape[0]))
for i in range(boxes.shape[0]):
box = boxes[i, :]
label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4)
cv2.putText(orig_image, label,
(box[0]+20, box[1]+40),
cv2.FONT_HERSHEY_SIMPLEX,
1, # font scale
(255, 0, 255),
2) # line type
cv2.imshow('annotated', orig_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()