-
Notifications
You must be signed in to change notification settings - Fork 1
/
alpha_zero_agent.py
141 lines (114 loc) · 4.6 KB
/
alpha_zero_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import random
import numpy as np
from collections import deque
from game import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer # Assuming you adapt your model to output both value and policy
from helper import plot
import math
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class AlphaZeroAgent:
def __init__(self):
self.n_games = 0
self.memory = deque(maxlen=MAX_MEMORY) # Store episodes for replay
self.model = Linear_QNet(11, 256, 3) # A neural net that will predict both value and policy
self.gamma = 0.9 # Discount factor for future rewards
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma) # Pass gamma
def get_state(self, game):
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
# Danger straight
(dir_r and game.is_collision(point_r)) or
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
# Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
# Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
# Move direction
dir_l,
dir_r,
dir_u,
dir_d,
# Food location
game.food.x < game.head.x, # food left
game.food.x > game.head.x, # food right
game.food.y < game.head.y, # food up
game.food.y > game.head.y # food down
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def train(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE)
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
def get_action(self, state):
# random moves: tradeoff exploration / exploitation
self.epsilon = 80 - self.n_games
final_move = [0, 0, 0]
if random.randint(0, 200) < self.epsilon:
move = random.randint(0, 2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = AlphaZeroAgent()
game = SnakeGameAI()
# Training loop
while True:
# Play a game (Self-play / Game simulation)
state_old = agent.get_state(game)
final_move = agent.get_action(state_old)
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
# Store experience
agent.remember(state_old, final_move, reward, state_new, done)
# Train agent on short-term memory (experience replay)
agent.train()
if done:
# If the game ends, train the agent on long-term memory
game.reset()
agent.n_games += 1
print(f"Game {agent.n_games}, Score: {score}, Record: {record}")
# Save the best model
if score > record:
record = score
agent.model.save()
# Store scores for plotting
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.n_games
plot_mean_scores.append(mean_score)
# Plot progress
plot(plot_scores, plot_mean_scores)
if __name__ == '__main__':
train()