forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nrtr_r31_1by8_1by4_academic.py
170 lines (150 loc) · 4.93 KB
/
nrtr_r31_1by8_1by4_academic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
_base_ = [
'../../_base_/default_runtime.py', '../../_base_/recog_models/nrtr.py'
]
label_convertor = dict(
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=False),
encoder=dict(type='TFEncoder'),
decoder=dict(type='TFDecoder'),
loss=dict(type='TFLoss'),
label_convertor=label_convertor,
max_seq_len=40)
# optimizer
optimizer = dict(type='Adam', lr=1e-3)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[3, 4])
total_epochs = 6
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeOCR',
height=32,
min_width=32,
max_width=160,
keep_aspect_ratio=True,
width_downsample_ratio=0.25),
dict(type='ToTensorOCR'),
dict(type='NormalizeOCR', **img_norm_cfg),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'filename', 'ori_shape', 'resize_shape', 'text', 'valid_ratio'
]),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiRotateAugOCR',
rotate_degrees=[0, 90, 270],
transforms=[
dict(
type='ResizeOCR',
height=32,
min_width=32,
max_width=160,
keep_aspect_ratio=True,
width_downsample_ratio=0.25),
dict(type='ToTensorOCR'),
dict(type='NormalizeOCR', **img_norm_cfg),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'filename', 'ori_shape', 'resize_shape', 'valid_ratio'
]),
])
]
dataset_type = 'OCRDataset'
train_prefix = 'data/mixture/'
train_img_prefix1 = train_prefix + \
'SynthText/synthtext/SynthText_patch_horizontal'
train_img_prefix2 = train_prefix + 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = train_prefix + 'SynthText/label.lmdb'
train_ann_file2 = train_prefix + 'Syn90k/label.lmdb'
train1 = dict(
type=dataset_type,
img_prefix=train_img_prefix1,
ann_file=train_ann_file1,
loader=dict(
type='LmdbLoader',
repeat=1,
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=False)
train2 = {key: value for key, value in train1.items()}
train2['img_prefix'] = train_img_prefix2
train2['ann_file'] = train_ann_file2
test_prefix = 'data/mixture/'
test_img_prefix1 = test_prefix + 'IIIT5K/'
test_img_prefix2 = test_prefix + 'svt/'
test_img_prefix3 = test_prefix + 'icdar_2013/'
test_img_prefix4 = test_prefix + 'icdar_2015/'
test_img_prefix5 = test_prefix + 'svtp/'
test_img_prefix6 = test_prefix + 'ct80/'
test_ann_file1 = test_prefix + 'IIIT5K/test_label.txt'
test_ann_file2 = test_prefix + 'svt/test_label.txt'
test_ann_file3 = test_prefix + 'icdar_2013/test_label_1015.txt'
test_ann_file4 = test_prefix + 'icdar_2015/test_label.txt'
test_ann_file5 = test_prefix + 'svtp/test_label.txt'
test_ann_file6 = test_prefix + 'ct80/test_label.txt'
test1 = dict(
type=dataset_type,
img_prefix=test_img_prefix1,
ann_file=test_ann_file1,
loader=dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=True)
test2 = {key: value for key, value in test1.items()}
test2['img_prefix'] = test_img_prefix2
test2['ann_file'] = test_ann_file2
test3 = {key: value for key, value in test1.items()}
test3['img_prefix'] = test_img_prefix3
test3['ann_file'] = test_ann_file3
test4 = {key: value for key, value in test1.items()}
test4['img_prefix'] = test_img_prefix4
test4['ann_file'] = test_ann_file4
test5 = {key: value for key, value in test1.items()}
test5['img_prefix'] = test_img_prefix5
test5['ann_file'] = test_ann_file5
test6 = {key: value for key, value in test1.items()}
test6['img_prefix'] = test_img_prefix6
test6['ann_file'] = test_ann_file6
data = dict(
samples_per_gpu=64,
workers_per_gpu=4,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=[train1, train2],
pipeline=train_pipeline),
val=dict(
type='UniformConcatDataset',
datasets=[test1, test2, test3, test4, test5, test6],
pipeline=test_pipeline),
test=dict(
type='UniformConcatDataset',
datasets=[test1, test2, test3, test4, test5, test6],
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='acc')