forked from DylanWusee/PointPWC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pointconv_util.py
418 lines (351 loc) · 15.1 KB
/
pointconv_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
PointConv util functions
Author: Wenxuan Wu
Date: May 2020
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from time import time
import numpy as np
from sklearn.neighbors.kde import KernelDensity
from pointnet2 import pointnet2_utils
LEAKY_RATE = 0.1
use_bn = False
class Conv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, use_leaky=True, bn=use_bn):
super(Conv1d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(LEAKY_RATE, inplace=True)
self.composed_module = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=True),
nn.BatchNorm1d(out_channels) if bn else nn.Identity(),
relu
)
def forward(self, x):
x = self.composed_module(x)
return x
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M]
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
def knn_point(nsample, xyz, new_xyz):
"""
Input:
nsample: max sample number in local region
xyz: all points, [B, N, C]
new_xyz: query points, [B, S, C]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
sqrdists = square_distance(new_xyz, xyz)
_, group_idx = torch.topk(sqrdists, nsample, dim = -1, largest=False, sorted=False)
return group_idx
def index_points_gather(points, fps_idx):
"""
Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S]
Return:
new_points:, indexed points data, [B, S, C]
"""
points_flipped = points.permute(0, 2, 1).contiguous()
new_points = pointnet2_utils.gather_operation(points_flipped, fps_idx)
return new_points.permute(0, 2, 1).contiguous()
def index_points_group(points, knn_idx):
"""
Input:
points: input points data, [B, N, C]
knn_idx: sample index data, [B, N, K]
Return:
new_points:, indexed points data, [B, N, K, C]
"""
points_flipped = points.permute(0, 2, 1).contiguous()
new_points = pointnet2_utils.grouping_operation(points_flipped, knn_idx.int()).permute(0, 2, 3, 1)
return new_points
def group(nsample, xyz, points):
"""
Input:
nsample: scalar
xyz: input points position data, [B, N, C]
points: input points data, [B, N, D]
Return:
new_xyz: sampled points position data, [B, 1, C]
new_points: sampled points data, [B, 1, N, C+D]
"""
B, N, C = xyz.shape
S = N
new_xyz = xyz
idx = knn_point(nsample, xyz, new_xyz)
grouped_xyz = index_points_group(xyz, idx) # [B, npoint, nsample, C]
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
if points is not None:
grouped_points = index_points_group(points, idx)
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
else:
new_points = grouped_xyz_norm
return new_points, grouped_xyz_norm
def group_query(nsample, s_xyz, xyz, s_points):
"""
Input:
nsample: scalar
s_xyz: input points position data, [B, N, C]
s_points: input points data, [B, N, D]
xyz: input points position data, [B, S, C]
Return:
new_xyz: sampled points position data, [B, 1, C]
new_points: sampled points data, [B, 1, N, C+D]
"""
B, N, C = s_xyz.shape
S = xyz.shape[1]
new_xyz = xyz
idx = knn_point(nsample, s_xyz, new_xyz)
grouped_xyz = index_points_group(s_xyz, idx) # [B, npoint, nsample, C]
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
if s_points is not None:
grouped_points = index_points_group(s_points, idx)
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
else:
new_points = grouped_xyz_norm
return new_points, grouped_xyz_norm
class WeightNet(nn.Module):
def __init__(self, in_channel, out_channel, hidden_unit = [8, 8], bn = use_bn):
super(WeightNet, self).__init__()
self.bn = bn
self.mlp_convs = nn.ModuleList()
self.mlp_bns = nn.ModuleList()
if hidden_unit is None or len(hidden_unit) == 0:
self.mlp_convs.append(nn.Conv2d(in_channel, out_channel, 1))
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
else:
self.mlp_convs.append(nn.Conv2d(in_channel, hidden_unit[0], 1))
self.mlp_bns.append(nn.BatchNorm2d(hidden_unit[0]))
for i in range(1, len(hidden_unit)):
self.mlp_convs.append(nn.Conv2d(hidden_unit[i - 1], hidden_unit[i], 1))
self.mlp_bns.append(nn.BatchNorm2d(hidden_unit[i]))
self.mlp_convs.append(nn.Conv2d(hidden_unit[-1], out_channel, 1))
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
def forward(self, localized_xyz):
#xyz : BxCxKxN
weights = localized_xyz
for i, conv in enumerate(self.mlp_convs):
if self.bn:
bn = self.mlp_bns[i]
weights = F.relu(bn(conv(weights)))
else:
weights = F.relu(conv(weights))
return weights
class PointConv(nn.Module):
def __init__(self, nsample, in_channel, out_channel, weightnet = 16, bn = use_bn, use_leaky = True):
super(PointConv, self).__init__()
self.bn = bn
self.nsample = nsample
self.weightnet = WeightNet(3, weightnet)
self.linear = nn.Linear(weightnet * in_channel, out_channel)
if bn:
self.bn_linear = nn.BatchNorm1d(out_channel)
self.relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(LEAKY_RATE, inplace=True)
def forward(self, xyz, points):
"""
PointConv without strides size, i.e., the input and output have the same number of points.
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, C, S]
new_points_concat: sample points feature data, [B, D', S]
"""
B = xyz.shape[0]
N = xyz.shape[2]
xyz = xyz.permute(0, 2, 1)
points = points.permute(0, 2, 1)
new_points, grouped_xyz_norm = group(self.nsample, xyz, points)
grouped_xyz = grouped_xyz_norm.permute(0, 3, 2, 1)
weights = self.weightnet(grouped_xyz)
new_points = torch.matmul(input=new_points.permute(0, 1, 3, 2), other = weights.permute(0, 3, 2, 1)).view(B, N, -1)
new_points = self.linear(new_points)
if self.bn:
new_points = self.bn_linear(new_points.permute(0, 2, 1))
else:
new_points = new_points.permute(0, 2, 1)
new_points = self.relu(new_points)
return new_points
class PointConvD(nn.Module):
def __init__(self, npoint, nsample, in_channel, out_channel, weightnet = 16, bn = use_bn, use_leaky = True):
super(PointConvD, self).__init__()
self.npoint = npoint
self.bn = bn
self.nsample = nsample
self.weightnet = WeightNet(3, weightnet)
self.linear = nn.Linear(weightnet * in_channel, out_channel)
if bn:
self.bn_linear = nn.BatchNorm1d(out_channel)
self.relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(LEAKY_RATE, inplace=True)
def forward(self, xyz, points):
"""
PointConv with downsampling.
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, C, S]
new_points_concat: sample points feature data, [B, D', S]
"""
#import ipdb; ipdb.set_trace()
B = xyz.shape[0]
N = xyz.shape[2]
xyz = xyz.permute(0, 2, 1)
points = points.permute(0, 2, 1)
fps_idx = pointnet2_utils.furthest_point_sample(xyz, self.npoint)
new_xyz = index_points_gather(xyz, fps_idx)
new_points, grouped_xyz_norm = group_query(self.nsample, xyz, new_xyz, points)
grouped_xyz = grouped_xyz_norm.permute(0, 3, 2, 1)
weights = self.weightnet(grouped_xyz)
new_points = torch.matmul(input=new_points.permute(0, 1, 3, 2), other = weights.permute(0, 3, 2, 1)).view(B, self.npoint, -1)
new_points = self.linear(new_points)
if self.bn:
new_points = self.bn_linear(new_points.permute(0, 2, 1))
else:
new_points = new_points.permute(0, 2, 1)
new_points = self.relu(new_points)
return new_xyz.permute(0, 2, 1), new_points, fps_idx
class PointConvFlow(nn.Module):
def __init__(self, nsample, in_channel, mlp, bn = use_bn, use_leaky = True):
super(PointConvFlow, self).__init__()
self.nsample = nsample
self.bn = bn
self.mlp_convs = nn.ModuleList()
if bn:
self.mlp_bns = nn.ModuleList()
last_channel = in_channel
for out_channel in mlp:
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
if bn:
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
last_channel = out_channel
self.relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(LEAKY_RATE, inplace=True)
def forward(self, xyz1, xyz2, points1, points2):
"""
Cost Volume layer for Flow Estimation
Input:
xyz1: input points position data, [B, C, N1]
xyz2: input points position data, [B, C, N2]
points1: input points data, [B, D, N1]
points2: input points data, [B, D, N2]
Return:
new_points: upsample points feature data, [B, D', N1]
"""
B, C, N1 = xyz1.shape
_, _, N2 = xyz2.shape
_, D1, _ = points1.shape
_, D2, _ = points2.shape
xyz1 = xyz1.permute(0, 2, 1)
xyz2 = xyz2.permute(0, 2, 1)
points1 = points1.permute(0, 2, 1)
points2 = points2.permute(0, 2, 1)
knn_idx = knn_point(self.nsample, xyz2, xyz1) # B, N1, nsample
neighbor_xyz = index_points_group(xyz2, knn_idx)
direction_xyz = neighbor_xyz - xyz1.view(B, N1, 1, C)
grouped_points2 = index_points_group(points2, knn_idx) # B, N1, nsample, D2
grouped_points1 = points1.view(B, N1, 1, D1).repeat(1, 1, self.nsample, 1)
new_points = torch.cat([grouped_points1, grouped_points2, direction_xyz], dim = -1) # B, N1, nsample, D1+D2+3
new_points = new_points.permute(0, 3, 2, 1) # [B, D1+D2+3, nsample, N1]
for i, conv in enumerate(self.mlp_convs):
if self.bn:
bn = self.mlp_bns[i]
new_points = self.relu(bn(conv(new_points)))
else:
new_points = self.relu(conv(new_points))
# weighted sum
dist = torch.norm(direction_xyz, dim = 3).clamp(min = 1e-10) # B N1 nsample
norm = torch.sum(1.0/dist, dim = 2, keepdim = True) # B N1 1
weights = (1.0/dist) / norm # B N1 nsample
costVolume = torch.sum(weights.unsqueeze(-1).permute(0, 3, 2, 1) * new_points, dim = 2) # B C N
return costVolume
class PointWarping(nn.Module):
def forward(self, xyz1, xyz2, flow1 = None):
if flow1 is None:
return xyz2
# move xyz1 to xyz2'
xyz1_to_2 = xyz1 + flow1
# interpolate flow
B, C, N1 = xyz1.shape
_, _, N2 = xyz2.shape
xyz1_to_2 = xyz1_to_2.permute(0, 2, 1) # B 3 N1
xyz2 = xyz2.permute(0, 2, 1) # B 3 N2
flow1 = flow1.permute(0, 2, 1)
knn_idx = knn_point(3, xyz1_to_2, xyz2)
grouped_xyz_norm = index_points_group(xyz1_to_2, knn_idx) - xyz2.view(B, N2, 1, C) # B N2 3 C
dist = torch.norm(grouped_xyz_norm, dim = 3).clamp(min = 1e-10)
norm = torch.sum(1.0 / dist, dim = 2, keepdim = True)
weight = (1.0 / dist) / norm
grouped_flow1 = index_points_group(flow1, knn_idx)
flow2 = torch.sum(weight.view(B, N2, 3, 1) * grouped_flow1, dim = 2)
warped_xyz2 = (xyz2 - flow2).permute(0, 2, 1) # B 3 N2
return warped_xyz2
class UpsampleFlow(nn.Module):
def forward(self, xyz, sparse_xyz, sparse_flow):
#import ipdb; ipdb.set_trace()
B, C, N = xyz.shape
_, _, S = sparse_xyz.shape
xyz = xyz.permute(0, 2, 1) # B N 3
sparse_xyz = sparse_xyz.permute(0, 2, 1) # B S 3
sparse_flow = sparse_flow.permute(0, 2, 1) # B S 3
knn_idx = knn_point(3, sparse_xyz, xyz)
grouped_xyz_norm = index_points_group(sparse_xyz, knn_idx) - xyz.view(B, N, 1, C)
dist = torch.norm(grouped_xyz_norm, dim = 3).clamp(min = 1e-10)
norm = torch.sum(1.0 / dist, dim = 2, keepdim = True)
weight = (1.0 / dist) / norm
grouped_flow = index_points_group(sparse_flow, knn_idx)
dense_flow = torch.sum(weight.view(B, N, 3, 1) * grouped_flow, dim = 2).permute(0, 2, 1)
return dense_flow
class SceneFlowEstimatorPointConv(nn.Module):
def __init__(self, feat_ch, cost_ch, flow_ch = 3, channels = [128, 128], mlp = [128, 64], neighbors = 9, clamp = [-200, 200], use_leaky = True):
super(SceneFlowEstimatorPointConv, self).__init__()
self.clamp = clamp
self.use_leaky = use_leaky
self.pointconv_list = nn.ModuleList()
last_channel = feat_ch + cost_ch + flow_ch
for _, ch_out in enumerate(channels):
pointconv = PointConv(neighbors, last_channel + 3, ch_out, bn = True, use_leaky = True)
self.pointconv_list.append(pointconv)
last_channel = ch_out
self.mlp_convs = nn.ModuleList()
for _, ch_out in enumerate(mlp):
self.mlp_convs.append(Conv1d(last_channel, ch_out))
last_channel = ch_out
self.fc = nn.Conv1d(last_channel, 3, 1)
def forward(self, xyz, feats, cost_volume, flow = None):
'''
feats: B C1 N
cost_volume: B C2 N
flow: B 3 N
'''
if flow is None:
new_points = torch.cat([feats, cost_volume], dim = 1)
else:
new_points = torch.cat([feats, cost_volume, flow], dim = 1)
for _, pointconv in enumerate(self.pointconv_list):
new_points = pointconv(xyz, new_points)
for conv in self.mlp_convs:
new_points = conv(new_points)
flow = self.fc(new_points)
return new_points, flow.clamp(self.clamp[0], self.clamp[1])