From d267f55935d6aa5bc372db45a5d520f1b617ede7 Mon Sep 17 00:00:00 2001 From: vinicius viena santana Date: Thu, 14 Nov 2024 22:06:22 +0100 Subject: [PATCH] version bump --- Project.toml | 2 +- docs/src/tutorials/isosteric_heat.md | 4 +--- 2 files changed, 2 insertions(+), 4 deletions(-) diff --git a/Project.toml b/Project.toml index fa195d9..6e00b00 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "Langmuir" uuid = "c62cc850-d7ca-4cc1-a95b-48008b40dc90" authors = ["Andrés Riedemann ", "Vinicius Santana "] -version = "0.1.0" +version = "0.1.1" [deps] BlackBoxOptim = "a134a8b2-14d6-55f6-9291-3336d3ab0209" diff --git a/docs/src/tutorials/isosteric_heat.md b/docs/src/tutorials/isosteric_heat.md index 6c9efb8..8f711c7 100644 --- a/docs/src/tutorials/isosteric_heat.md +++ b/docs/src/tutorials/isosteric_heat.md @@ -81,9 +81,7 @@ The Gibbs excess free energy term, $\frac{g^E}{RT}$, is expressed as: $\frac{g^E}{RT} = \frac{\theta_i \theta_\phi \tau_{i\phi} (G_{i\phi} - 1)}{\theta_i G_{i\phi} + \theta_\phi}$ -where: - -$B_{i\phi}$ is a model parameter, $\tau_{i\phi} = B_{i\phi} / T$, $G_{i\phi} = \exp(-0.3 \cdot \tau_{i\phi})$. +where, $B_{i\phi}$ is a model parameter, $\tau_{i\phi} = B_{i\phi} / T$, $G_{i\phi} = \exp(-0.3 \cdot \tau_{i\phi})$. Here, $\theta_i$ and $\theta_\phi$ are the coverage terms for the adsorbed species and adsorption sites, respectively ($\theta_i + \theta_{\phi} = 1$), and $T$ is the temperature.