This repository has been archived by the owner on Nov 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
volume_timeline_module.R
143 lines (118 loc) · 4.49 KB
/
volume_timeline_module.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
volumeTimelineUI <- function(id){
ns <- NS(id)
tagList(
div(
style = "max-width: 1200px;",
fluidRow(
column(
width = 7,
"This chart shows the number of matching search results for each month. Click and drag to zoom, and double-click to reset the zoom level."
),
column(
width = 3,
shinyWidgets::materialSwitch(inputId = ns("show_trend"),
value = FALSE,
label = "Show Trend Line?",
status = "primary",
right = TRUE),
)
)
),
div(
style = "max-width: 1200px;",
shiny::uiOutput(ns("volume_timeline_plot_ui")) %>%
shinycssloaders::withSpinner()
)
)
}
volumeTimeline <- function(input, output, session,
data_set_info,
query_info) {
plot_data <- reactive({
req(query_info()$num_hits > 0)
aggregations <- query_text_depot(query_info = query_info(),
aggregates_json = volumeTimelineQuery())
aggregations = parse_aggregates(es_results = aggregations)
plot_hits <- aggregations$month_counts.buckets %>%
transmute(Date = as.Date(key_as_string), Count = doc_count, index_name = index) %>%
left_join(select(data_set_info(), index_name, display_name), by = "index_name") %>% # to get display name
mutate(Date = strftime(Date, format = "%Y-%m")) %>%
mutate(Date = as.Date(paste0(Date, "-01"))) %>%
arrange(display_name)
# Pad months:
all_months <- data_set_info() %>%
filter(index_name %in% unique(aggregations$month_counts.buckets$index)) %>%
group_by(display_name) %>%
transmute(Date = list( seq(lubridate::floor_date(date_range_min, unit = "month"),
lubridate::ceiling_date(date_range_max, unit = "month") - as.difftime(1, unit = "days"),
by = "months")) ) %>%
ungroup() %>%
tidyr::unnest_longer(Date) %>%
mutate(fill_value = 0)
plot_hits <- plot_hits %>%
right_join(all_months, by = c("Date" = "Date", "display_name" = "display_name")) %>%
mutate(Count = dplyr::coalesce(Count, fill_value)) # when count is NA, use the fill value
return(plot_hits)
})
output$volume_timeline_plot <- plotly::renderPlotly({
req(plot_data)
req(data_set_info)
p <- plot_data() %>%
plot_timeseries_td(
date_var = Date,
value_var = as.integer(Count),
group_var = display_name,
colour_var = display_name,
data_set_info = data_set_info(),
scales = "free_y",
show_trend = input$show_trend,
date_format = "%Y-%b"
)
# https://stackoverflow.com/questions/44569551/date-format-in-hover-for-ggplot2-and-plotly
p <- p +
geom_line(aes(text = paste0("<b>", display_name, '</b>\n',
"Document Count: ", Count, '\n',
"Date: ", format(Date, format = "%b-%Y")))) %>%
suppressWarnings()
not_enough_data <- plot_data() %>%
group_by(display_name) %>%
filter(n() <= 1)
if (nrow(not_enough_data) > 0) {
p <- p + geom_point(data = not_enough_data, mapping = aes(text = paste0("<b>", display_name, '</b>\n',
"Document Count: ", Count, '\n',
"Date: ", format(Date, format = "%b-%Y")))) %>%
suppressWarnings()
}
p1 <- plotly::ggplotly(p, tooltip = c("text"), dynamicTicks = TRUE) %>%
layout(margin = list(l = 75, r = 75))
# loop over y axes (facets) in the plotly plot:
for (x in names(p1$x$layout)[grepl("yaxis", names(p1$x$layout))]) {
# turn off y zoom for each y axis
p1[["x"]][["layout"]][[x]][["fixedrange"]] <- TRUE
}
return(p1)
})
output$volume_timeline_plot_ui <- renderUI({
n_facets <- n_distinct(plot_data()$display_name)
plotly::plotlyOutput(session$ns("volume_timeline_plot"), height = 200 + (100 * n_facets))
})
}
volumeTimelineQuery <- function() {
'
"aggs": {
"group_by_index": {
"terms": {
"field": "_index"
},
"aggs" : {
"month_counts" : {
"date_histogram" : {
"field" : "date",
"calendar_interval" : "month"
}
}
}
}
}
'
}