-
Notifications
You must be signed in to change notification settings - Fork 4
/
a3c_agent.py
584 lines (468 loc) · 29.3 KB
/
a3c_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#!/usr/bin/python3
"""
@author: Franz Papst
"""
import os
import time
import pickle
import threading
import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
from xml.dom import minidom
from xml.etree import ElementTree as ET
from pysc2.lib import actions
A3C_SCREEN_SIZE_X = 32
A3C_SCREEN_SIZE_Y = 32
A3C_MINIMAP_SIZE_X = A3C_SCREEN_SIZE_X
A3C_MINIMAP_SIZE_Y = A3C_SCREEN_SIZE_Y
NUM_ACTIONS = 15
NON_SPATIAL_FEATURES = 6 + 6 + NUM_ACTIONS
MINIMAP_FEATURES = 2
SCREEN_FEATURES = 3
TRAINING = True
DISCOUNT_FACTOR = 0.99
EXPLORATION_RATE = 0.4
LEARNING_RATE = 10e-3
EPSILON = 0.05
NUM_BATCHES = 20
PARALLEL_THREADS = 16
MAX_STEPS_TOTAL = 600 * 10**6
CHECKPOINT = 500
SAVE_PATH = './saved_checkpoints/'
LOG_PATH = './logs/'
PLOT_PATH = './plots/'
DETAILED_LOGS = 10 # detailed logs are kept for top 10 episodes for minerals and gas, as well as for the last 10 episodes
RENDER = False
SHOW_PROGRESS = True
class NeuralNetwork:
"""Neural Network for the agent.
This class builds the neural network part of the TensorFlow graph. It consists of two convolutional neural networks
for screen and minimap as well as a fully connected neural network to connect the spatial inputs with the non-spatial
features and another convoluted neural network that gives the position of the spatial actions, as well as one more
fully connected neural network for selecting the non-spatial action and another fully connected neural network that
gives the value of a given state.
Based on https://github.com/xhujoy/pysc2-agents
"""
def __init__(self):
"""Builds the neural network."""
assert A3C_MINIMAP_SIZE_X == A3C_SCREEN_SIZE_X, 'resolution of minimap and screen have to be the same (X-axis)'
assert A3C_MINIMAP_SIZE_Y == A3C_SCREEN_SIZE_Y, 'resolution of minimap and screen have to be the same (Y-axis)'
self.minimap = tf.placeholder(shape=(None, MINIMAP_FEATURES, A3C_MINIMAP_SIZE_X, A3C_MINIMAP_SIZE_Y), dtype=np.float32, name='minimap')
self.screen = tf.placeholder(shape=(None, SCREEN_FEATURES, A3C_SCREEN_SIZE_X, A3C_SCREEN_SIZE_Y), dtype=np.float32, name='screen')
self.non_spatial_features =tf.placeholder(shape=(None, NON_SPATIAL_FEATURES), dtype=np.float32, name='non_spatial_features')
minimap_conv1 = layers.conv2d(tf.transpose(self.minimap, [0, 2, 3, 1]), num_outputs=16, kernel_size=5, stride=1,scope='minimap_conv1')
minimap_conv2 = layers.conv2d(minimap_conv1, num_outputs=32, kernel_size=3, stride=1, scope='minimap_conv2')
screen_conv1 = layers.conv2d(tf.transpose(self.screen, [0, 2, 3, 1]), num_outputs=16, kernel_size=5, stride=1,scope='screen_conv1')
screen_conv2 = layers.conv2d(screen_conv1, num_outputs=32, kernel_size=3, stride=1, scope='screen_conv2')
non_spatial_features = layers.fully_connected(layers.flatten(self.non_spatial_features), num_outputs=256, activation_fn=tf.tanh, scope='non_spatial_features')
features_convoluted = tf.concat([minimap_conv2, screen_conv2], axis=3)
spatial_action = layers.conv2d(features_convoluted, num_outputs=1, kernel_size=1, stride=1, activation_fn=None, scope='spatial_action')
full_features = tf.concat([layers.flatten(minimap_conv2), layers.flatten(screen_conv2), non_spatial_features], axis=1)
full_features = layers.fully_connected(full_features, num_outputs=256, activation_fn=tf.nn.relu, scope='full_features')
self.spatial_action = tf.nn.softmax(layers.flatten(spatial_action))
self.non_spatial_action = layers.fully_connected(full_features, num_outputs=NUM_ACTIONS, activation_fn=tf.nn.softmax, scope='non_spatial_action')
self.value = tf.reshape(layers.fully_connected(full_features, num_outputs=1, activation_fn=None, scope='value'), [-1])
class A3CAgent:
"""An agent for collecting resources using the asynchronous advantage actor-critic algorithm.
This agent uses the above defined neural network and implements the synchronous advantage actor-critic algorithm (A3C)
Since the algorithm is based on running multiple instances in parallel the following static members are used to
keep certain aspects (like the total number of steps or the total number of episodes) in synch. It also uses a static
member for keeping track of all the steps an agent has performed.
Based on https://github.com/xhujoy/pysc2-agents
"""
step_counter = 0
episode_counter = 0
action_logs = {}
lock_step = threading.Lock()
lock_episode = threading.Lock()
def __init__(self, session, agent_id, summary_writer, name='A3CAgent'):
"""Initialises the agent.
It also adds more operations as well as inputs to the computation graph, like the advantage function or masking
to only use valid actions and positions as input for the advantage function. It uses the RMSPropOptimizer as
optimiser.
:param session: the TensorFlow session to which the agent instances belong
:param agent_id: the number of the agent instance
:param summary_writer: the summary writer for storing the progress of TensorFlow's weight updates
:param name: the name of the TensorFlow scope
"""
self.reward = 0
self.episodes = 0
self.steps = 0
self.episode_start = 0
self.agent_id = agent_id
A3CAgent.action_logs[self.agent_id] = None
reuse = self.agent_id > 0
self.epsilon = EPSILON
self.exploration_rate = EXPLORATION_RATE
self.discount_factor = DISCOUNT_FACTOR
self.executable_actions = [0, 1, 2, 6, 44, 79, 91, 264, 269, 318, 319, 331, 332, 343, 344]
self.replay_states = []
self.replay_actions = []
self.summary = []
self.summary_writer = summary_writer
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
self.nn = NeuralNetwork()
self.valid_spatial_action = tf.placeholder(tf.float32, [None, ], name='valid_spatial_action')
self.valid_non_spatial_action = tf.placeholder(tf.float32, [None, NUM_ACTIONS], name='valid_non_spatial_action')
self.spatial_action_selected = tf.placeholder(tf.float32, [None, A3C_SCREEN_SIZE_X * A3C_SCREEN_SIZE_Y], name='spatial_action_selected')
self.non_spatial_action_selected = tf.placeholder(tf.float32, [None, NUM_ACTIONS], name='non_spatial_action_selected')
self.R = tf.placeholder(tf.float32, [None], name='R')
spatial_action_prob = tf.reduce_sum(tf.multiply(self.nn.spatial_action, self.spatial_action_selected)) # axis=1?
spatial_action_log_prob = tf.log(tf.clip_by_value(spatial_action_prob, 1e-10, 1))
non_spatial_action_prob = tf.reduce_sum(tf.multiply(self.nn.non_spatial_action, self.non_spatial_action_selected))
valid_non_spatial_action_prob = tf.reduce_sum(tf.multiply(self.nn.non_spatial_action, self.valid_non_spatial_action))
valid_non_spatial_action_prob = tf.clip_by_value(valid_non_spatial_action_prob, 1e-10, 1)
non_spatial_action_prob = tf.div(non_spatial_action_prob, valid_non_spatial_action_prob)
non_spatial_action_log_prob = tf.log(tf.clip_by_value(non_spatial_action_prob, 1e-10, 1))
self.summary.append(tf.summary.histogram('spatial_action_prob', spatial_action_prob))
self.summary.append(tf.summary.histogram('non_spatial_action_prob', non_spatial_action_prob))
action_log_prob = tf.add(tf.multiply(self.valid_spatial_action, spatial_action_log_prob), non_spatial_action_log_prob)
advantage = tf.stop_gradient(tf.subtract(self.R, self.nn.value))
self.policy_loss = -tf.reduce_mean(tf.multiply(action_log_prob, advantage))
self.value_loss = -tf.reduce_mean(tf.multiply(self.nn.value, advantage))
loss = tf.add(self.policy_loss, self.value_loss)
self.summary.append(tf.summary.scalar('policy_loss', self.policy_loss))
self.summary.append(tf.summary.scalar('value_loss', self.value_loss))
self.learning_rate = tf.placeholder(tf.float32, None, name='learning_rate')
optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.99, epsilon=1e-10, use_locking=True)
gradients = optimizer.compute_gradients(loss)
clipped_gradients = []
for grad, var in gradients:
grad = tf.clip_by_norm(grad, 100.0) # if gradients get updated more frequently, it probably should be 10
clipped_gradients.append([grad, var])
self.summary.append(tf.summary.histogram(var.op.name, var))
self.summary.append(tf.summary.histogram(var.op.name + '/grad', grad))
self.train = optimizer.apply_gradients(clipped_gradients)
self.summary_op = tf.summary.merge(self.summary)
self.tf_session = session
self.saver = tf.train.Saver()
def setup(self, obs_spec, action_spec):
"""Setup method, called by the environment when starting the agent."""
self.obs_spec = obs_spec
self.action_spec = action_spec
def reset(self):
"""Reset method, called by the environment when an episode finishes.
This method gets called when the environment is set-up and when an episode finishes. It resets the number of
steps this agent instance has taken and increases the number of episodes for this agent instance by one. If the
agent instance has replay states (which is only not the case when this method is called during the initialisation
of the agent) it also calls the method for updating the weights of the neural network. If the SHOW_PROGRESS
flag is set, it outputs the number of the global episode (for all agent instances) and how long it took. Every
CHECKPOINT episodes it calls the method for saving a checkpoint.
"""
if not TRAINING:
self.episodes += 1
self.steps = 0
return
if len(self.replay_states) > 0:
self.episodes += 1
self.steps = 0
with A3CAgent.lock_episode:
A3CAgent.episode_counter += 1
global_episode = A3CAgent.episode_counter
global_steps = A3CAgent.step_counter
reward, policy_loss, value_loss = self.update()
self.save_action_log(global_episode, reward, policy_loss, value_loss)
self.replay_states = []
self.replay_actions = []
if SHOW_PROGRESS:
print('Episode {0:d} finished, took: {1:4.3f} seconds'.format(global_episode, time.time() - self.episode_start))
self.episode_start = time.time()
if global_episode % CHECKPOINT == 0:
print('Episode: {0:d}, step {1:d}/{2:d}, saving model...'.format(global_episode, global_steps, MAX_STEPS_TOTAL))
self.save_checkpoint(global_steps, global_episode)
print('Model saved')
else:
self.episode_start = time.time()
def initialize(self):
"""Initialises a TensorFlow session.
This method gets only called once for one agent instance, but since the variables are shared it applies for all
agent instance. If the session restored from what's saved to hard disk, it must not get called, otherwise it
will overwrite the restored values.
"""
self.tf_session.run(tf.global_variables_initializer())
def step(self, obs):
"""One step of an agent instance.
This method selects which action to exectue and where. It does so by feeding the current state into the neural
network. During the training of the agent it can also return a random action or a random position. The probability
of this depends on how many global steps the agent has taken: the more, the less likely it is for the agent to
perform a random action, but even if this adaptive probability is one, it can perform a random action with the
probability of an predefined epsilon.
:param obs: the observation of the game state
:return: the action the agent is going to execute
"""
self.steps += 1
if A3CAgent.step_counter >= MAX_STEPS_TOTAL:
self.update(LEARNING_RATE)
# stopping the execution of the threads via an exception
raise KeyboardInterrupt
nn_input = self.create_feed_dict(obs.observation)
non_spatial_action, spatial_action = self.tf_session.run([self.nn.non_spatial_action, self.nn.spatial_action], feed_dict=nn_input)
available_actions = obs.observation['available_actions']
valid_actions = set(available_actions).intersection(self.executable_actions)
valid_actions_mask = np.array([True] * len(self.executable_actions))
for i in available_actions:
if i in valid_actions:
valid_actions_mask[self.executable_actions.index(i)] = False
non_spatial_action = non_spatial_action.flatten()
action_id = self.executable_actions[np.argmax(np.ma.array(non_spatial_action, mask=valid_actions_mask))]
action_target = np.argmax(spatial_action.ravel())
action_target = (action_target // A3C_SCREEN_SIZE_Y, action_target % A3C_SCREEN_SIZE_X)
random_action = False
random_position = False
if TRAINING:
# exploration is done via a combination of epsilon greedy and and adaptive exploration rate
explore = (A3CAgent.step_counter + ((1 - self.exploration_rate) * MAX_STEPS_TOTAL)) / MAX_STEPS_TOTAL
if np.random.rand() > explore or np.random.rand() < self.epsilon:
valid_actions = np.array(list(valid_actions), dtype=np.int32)
action_id = np.random.choice(valid_actions)
random_action = True
if np.random.rand() > explore or np.random.rand() < self.epsilon:
action_target = (np.random.randint(0, A3C_SCREEN_SIZE_Y - 1), np.random.randint(0, A3C_SCREEN_SIZE_X - 1))
random_position = True
self.replay_states.append((nn_input[self.nn.minimap],
nn_input[self.nn.screen],
nn_input[self.nn.non_spatial_features],
obs.last()))
self.replay_actions.append((action_id, action_target, list(valid_actions), random_action, random_position))
arguments = []
for arg in actions.FUNCTIONS[action_id].args:
# if the action needs a target, note that select_rect is not supported yet, so only those two are checked
if arg.name in ('screen', 'minimap'):
arguments.append(action_target)
else:
arguments.append([0]) # only executing direct actions, no queuing
with A3CAgent.lock_step:
A3CAgent.step_counter += 1
return actions.FunctionCall(action_id, arguments)
def update(self):
"""Updating the weights of the neural network.
This method updates the weights of the neural network, it is the implementation of the A3C algorithm. It puts
the input data in a shape that can be fed into the TensorFlow graph, note that the input data is split into
NUM_BATCH chunks, this is done so that the algorithm can also run on a regular notebook GPU and not allocate
more VRAM than available (tested with 4GB of VRAM).
It gets called from reset() after an episode finishes, in order to make it converge faster it should be probably
called more frequently from step() e.g. after every 100 steps.
The learning rate for the updates is decreasing over time, the earlier, the higher the learning rate.
The return values are for saving the progress of the update.
:return: total reward of that episode, loss of actor, loss of critic
"""
#TODO: restructure method, so can be called from step() without resetting the results for an episode
learning_rate = LEARNING_RATE * (1 - 0.9 * A3CAgent.step_counter / MAX_STEPS_TOTAL)
# if the last state in the buffer is a terminal state, set R=0
if self.replay_states[-1][-1]:
R = 0
else:
minimap, screen, non_spatial_features, _ = self.replay_states[-1]
feed_dict = {self.nn.minimap: minimap,
self.nn.screen: screen,
self.nn.non_spatial_features: non_spatial_features}
R = self.tf_session.run(self.nn.value, feed_dict=feed_dict)[0]
cumulated_rewards = np.zeros(shape=len(self.replay_states,), dtype=np.float32)
cumulated_rewards[0] = R
valid_spatial_action = np.zeros(shape=(len(self.replay_states,)), dtype=np.float32)
spatial_action_selected = np.zeros(shape=(len(self.replay_states), A3C_SCREEN_SIZE_X * A3C_SCREEN_SIZE_Y), dtype=np.float32)
valid_non_spatial_action = np.zeros([len(self.replay_states), len(self.executable_actions,)], dtype=np.float32)
non_spatial_action_selected = np.zeros([len(self.replay_states), len(self.executable_actions)], dtype=np.float32)
self.replay_states.reverse()
self.replay_actions.reverse()
minimap = []
screen = []
non_spatial_features = []
for i in range(len(self.replay_states)):
mm, scr, info, _ = self.replay_states[i]
minimap.append(mm)
screen.append(scr)
non_spatial_features.append(info)
# reward is minerals + gas * 10 + collection_rate_minerals * 10 + collection_rate_gas * 100
reward = info.flatten()[8] + info.flatten()[9] * 10 + info.flatten()[10] * 10 + info.flatten()[11] * 100
if i > 0:
cumulated_rewards[i] = reward + self.discount_factor * cumulated_rewards[i-1]
action_id, action_target, valid_actions, _ , _ = self.replay_actions[i]
valid_actions_indices = [0] * len(self.executable_actions)
for j in valid_actions:
valid_actions_indices[self.executable_actions.index(j)] = 1
valid_non_spatial_action[i] = valid_actions_indices
non_spatial_action_selected[i, self.executable_actions.index(action_id)] = 1
args = actions.FUNCTIONS[action_id].args
for arg in args:
if arg.name in ('screen', 'minimap'):
valid_spatial_action[i] = 1
index = action_target[1] * A3C_SCREEN_SIZE_Y + action_target[0]
spatial_action_selected[i, index] = 1
final_reward = cumulated_rewards[-1]
minimap = np.array(minimap).squeeze()
screen = np.array(screen).squeeze()
non_spatial_features = np.array(non_spatial_features).squeeze()
non_spatial_action_selected = np.array(non_spatial_action_selected)
# split the input into batches, to not consume all the GPU memory
minimap = np.array_split(minimap, NUM_BATCHES)
screen = np.array_split(screen, NUM_BATCHES)
non_spatial_features = np.array_split(non_spatial_features, NUM_BATCHES)
cumulated_rewards = np.array_split(cumulated_rewards, NUM_BATCHES)
valid_spatial_action = np.array_split(valid_spatial_action, NUM_BATCHES)
spatial_action_selected = np.array_split(spatial_action_selected, NUM_BATCHES)
valid_non_spatial_action = np.array_split(valid_non_spatial_action, NUM_BATCHES)
non_spatial_action_selected = np.array_split(non_spatial_action_selected, NUM_BATCHES)
run_options = tf.RunOptions(report_tensor_allocations_upon_oom=True)
losses = np.array([], dtype=np.float32).reshape(0,2)
for i in range(len(minimap)):
feed_dict = {self.nn.minimap: minimap[i],
self.nn.screen: screen[i],
self.nn.non_spatial_features: non_spatial_features[i],
self.R: cumulated_rewards[i],
self.valid_spatial_action: valid_spatial_action[i],
self.spatial_action_selected: spatial_action_selected[i],
self.valid_non_spatial_action: valid_non_spatial_action[i],
self.non_spatial_action_selected: non_spatial_action_selected[i],
self.learning_rate: learning_rate}
_, summary, policy_loss, value_loss = self.tf_session.run([self.train, self.summary_op, self.policy_loss, self.value_loss], feed_dict=feed_dict, options=run_options)
self.summary_writer.add_summary(summary, A3CAgent.step_counter)
losses = np.vstack((losses, (policy_loss, value_loss)))
# reverse it again, so it is in the original order, both lists are used later on
self.replay_states.reverse()
self.replay_actions.reverse()
avg_losses = losses.mean(axis=0)
return final_reward, avg_losses[0], avg_losses[1]
def create_feed_dict(self, observation):
"""Creates a feed dictionary for TensorFlow.
This method gets called from step() and takes an observation as input, it reshapes and reduces some of the input
data in the way how it is needed for the agent and creates a dictionary that can be fed into TensorFlow.
:param observation: all current observations from the environment
:return: a dictionary that can be fed into TensorFlow
"""
minimap = np.array(observation['minimap'], dtype=np.float32)
minimap = np.delete(minimap, [0, 2, 4, 5, 6], 0)
minimap = np.expand_dims(minimap, axis=0)
screen = np.array(observation['screen'], dtype=np.float32)
screen = np.delete(screen, [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16], 0)
screen = np.expand_dims(screen, axis=0)
# TODO: add observation['single_select']
non_spatial_features = np.array([
observation['player'][1],
observation['player'][2],
observation['player'][3],
observation['player'][4],
observation['player'][6],
observation['player'][7],
observation['score_cumulative'][0],
observation['score_cumulative'][2],
observation['score_cumulative'][7],
observation['score_cumulative'][8],
observation['score_cumulative'][9],
observation['score_cumulative'][10]
], dtype=np.float32)
non_spatial_features = np.append(non_spatial_features, [1 if i in observation['available_actions'] else 0 for i in self.executable_actions])
non_spatial_features = np.expand_dims(non_spatial_features, axis=0)
feed_dict = {self.nn.minimap: minimap,
self.nn.screen: screen,
self.nn.non_spatial_features: non_spatial_features}
return feed_dict
def save_checkpoint(self, global_steps, global_episodes):
"""Saves a checkpoint.
This method saves the current weights of the neural network (using TensorFlow's saver) as well as some metadata
(saved in Python variables) and log files for all agent instances. It get called every CHECKPOINT episodes from
reset().
:param global_steps: the current number of the agent's total steps
:param global_episodes: the current number of the agent's total episodes
"""
action_logs = A3CAgent.action_logs
if not os.path.exists(SAVE_PATH):
os.mkdir(SAVE_PATH)
with open(SAVE_PATH + 'python_vars.pickle', 'wb') as f:
pickle.dump((global_steps, global_episodes, A3C_SCREEN_SIZE_Y, A3C_SCREEN_SIZE_X), f)
self.saver.save(self.tf_session, SAVE_PATH + 'SC2_A3C_harvester.ckpt')
for k, v in action_logs.items():
filename = LOG_PATH + 'agent{:02d}.xml'.format(k)
with open(filename, 'w') as f:
reparsed = minidom.parseString(ET.tostring(v.getroot()))
reparsed.writexml(f, addindent=' ', newl='\n')
def load_checkpoint(self):
"""Restores a checkpoint.
This method loads and restores a previous run of the agent: the weights of the neural network(using TensorFlow's
saver class), as well as some metadata (saved in Python variables) and the log files for each agent instance (as
XML). It also performs some checks whether the specifications of the restored agent match with the current agent.
It gets called from the start_a3c_agent() function in main.
:return: whether the restoring of the agent instance was successful
"""
if not os.path.exists(SAVE_PATH):
raise FileNotFoundError('Could not find saved model.')
with open(SAVE_PATH + 'python_vars.pickle', 'rb') as f:
python_vars = pickle.load(f)
A3CAgent.step_counter = python_vars[0]
A3CAgent.episode_counter = python_vars[1]
screen_x = python_vars[2]
screen_y = python_vars[3]
assert screen_x == A3C_SCREEN_SIZE_X, 'Agent was trained for a different resolution (X-axis)'
assert screen_y == A3C_SCREEN_SIZE_Y, 'Agent was trained for a different resolution (Y-axis)'
loaded_successfully = True
try:
A3CAgent.action_logs[self.agent_id] = ET.parse(LOG_PATH + 'agent{:02d}.xml'.format(self.agent_id))
root = A3CAgent.action_logs[self.agent_id].getroot()
self.episodes = int(root.getchildren()[-1].attrib['num_agent'])
except FileNotFoundError:
print('Could not find XML file for agent {:d}'.format(self.agent_id))
loaded_successfully = False
checkpoint = tf.train.get_checkpoint_state(SAVE_PATH)
self.saver.restore(self.tf_session, checkpoint.model_checkpoint_path)
return loaded_successfully
def save_action_log(self, num_episode, reward, policy_loss, value_loss):
"""Saves the logs of all agent instances to a XML.
This method creates a XML log, if it doesn't exist already, otherwise it will append the results for the currently
finished episode to XML log. In order to keep the file size reasonable it only stores the detailed action logs
of the top 10 episodes for reward, collected minerals and collected gas as well as for the last 10 episodes.
It gets called from reset() after every episode.
:param num_episode: current total number of episodes
:param reward: reward for current episode
:param policy_loss: policy loss for current episode
:param value_loss: value loss for current episode
"""
if not A3CAgent.action_logs[self.agent_id]:
root = ET.Element('action_logs')
tree = ET.ElementTree(root)
else:
tree = A3CAgent.action_logs[self.agent_id]
total_collected_minerals = int(self.replay_states[-1][2].flatten()[8])
total_collected_gas = int(self.replay_states[-1][2].flatten()[9])
minerals_per_episode = [(self.episodes, total_collected_minerals)]
gas_per_episode = [(self.episodes , total_collected_gas)]
for t in tree.findall('episode'):
value = int(t.attrib['total_collected_minerals'])
episode = int(t.attrib['num_agent'])
minerals_per_episode.append((episode, value))
value = int(t.attrib['total_collected_gas'])
episode = int(t.attrib['num_agent'])
gas_per_episode.append((episode, value))
# keep detailed logs only for the 5 best results for minerals and gas
# add all episodes to the list, sort them and prune the list
minerals_per_episode.sort(key=lambda tup: tup[1], reverse=True)
gas_per_episode.sort(key=lambda tup: tup[1], reverse=True)
kept_episodes = set([i[0] for i in minerals_per_episode[:DETAILED_LOGS] + gas_per_episode[:DETAILED_LOGS]] + [j for j in range(self.episodes - DETAILED_LOGS + 1, self.episodes + 1)])
other_episodes = set([i[0] for i in minerals_per_episode + gas_per_episode]) - kept_episodes
log_entry = ET.SubElement(tree.getroot(), 'episode')
log_entry.attrib['num_global'] = str(num_episode)
log_entry.attrib['num_agent'] = str(self.episodes)
log_entry.attrib['total_collected_minerals'] = str(total_collected_minerals)
log_entry.attrib['total_collected_gas'] = str(total_collected_gas)
log_entry.attrib['loss_actor'] = str(policy_loss)
log_entry.attrib['loss_critic'] = str(value_loss)
log_entry.attrib['reward'] = str(reward)
if self.episodes in kept_episodes:
for i, action in enumerate(self.replay_actions):
performed_action = ET.SubElement(log_entry, 'action')
performed_action.attrib['name'] = actions.FUNCTIONS[action[0]].name
performed_action.attrib['x'] = str(action[1][0])
performed_action.attrib['y'] = str(action[1][1])
performed_action.attrib['random_action'] = str(action[3])
performed_action.attrib['random_position'] = str(action[4])
collected_minerals = self.replay_states[i][2].flatten()[8]
collected_gas = self.replay_states[i][2].flatten()[9]
performed_action.attrib['collected_minerals'] = str(int(collected_minerals))
performed_action.attrib['collected_gas'] = str(int(collected_gas))
for e in other_episodes:
remove_entry = tree.find('.//episode[@num_agent="{:d}"]'.format(e))
for r in remove_entry.findall('action'):
remove_entry.remove(r)
A3CAgent.action_logs[self.agent_id] = tree