-
Notifications
You must be signed in to change notification settings - Fork 1
/
egnn_clean.py
217 lines (179 loc) · 8.29 KB
/
egnn_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
##################################################################################################################
# Obtained from https://github.com/vgsatorras/egnn/blob/main/models/egnn_clean/egnn_clean.py
# Credit: 'E(n) Equivariant Graph Neural Networks' by Victor Garcia Satorras, Emiel Hogeboom, Max Welling
# Proceedings of the 38th International Conference on Machine Learning, PMLR 139:9323-9332, 2021.
##################################################################################################################
from torch import nn
import torch
class E_GCL(nn.Module):
"""
E(n) Equivariant Convolutional Layer
re
"""
def __init__(self, input_nf, output_nf, hidden_nf, edges_in_d=0, act_fn=nn.SiLU(), residual=True, attention=False, normalize=False, coords_agg='mean', tanh=False):
super(E_GCL, self).__init__()
input_edge = input_nf * 2
self.residual = residual
self.attention = attention
self.normalize = normalize
self.coords_agg = coords_agg
self.tanh = tanh
self.epsilon = 1e-8
edge_coords_nf = 1
self.edge_mlp = nn.Sequential(
nn.Linear(input_edge + edge_coords_nf + edges_in_d, hidden_nf),
act_fn,
nn.Linear(hidden_nf, hidden_nf),
act_fn)
self.node_mlp = nn.Sequential(
nn.Linear(hidden_nf + input_nf, hidden_nf),
act_fn,
nn.Linear(hidden_nf, output_nf))
layer = nn.Linear(hidden_nf, 1, bias=False)
torch.nn.init.xavier_uniform_(layer.weight, gain=0.001)
coord_mlp = []
coord_mlp.append(nn.Linear(hidden_nf, hidden_nf))
coord_mlp.append(act_fn)
coord_mlp.append(layer)
if self.tanh:
coord_mlp.append(nn.Tanh())
self.coord_mlp = nn.Sequential(*coord_mlp)
if self.attention:
self.att_mlp = nn.Sequential(
nn.Linear(hidden_nf, 1),
nn.Sigmoid())
def edge_model(self, source, target, radial, edge_attr):
if edge_attr is None: # Unused.
out = torch.cat([source, target, radial], dim=1)
else:
out = torch.cat([source, target, radial, edge_attr], dim=1)
out = self.edge_mlp(out)
if self.attention:
att_val = self.att_mlp(out)
out = out * att_val
return out
def node_model(self, x, edge_index, edge_attr, node_attr):
row, col = edge_index
agg = unsorted_segment_sum(edge_attr, row, num_segments=x.size(0))
if node_attr is not None:
agg = torch.cat([x, agg, node_attr], dim=1)
else:
agg = torch.cat([x, agg], dim=1)
out = self.node_mlp(agg)
if self.residual:
out = x + out
return out, agg
def coord_model(self, coord, edge_index, coord_diff, edge_feat):
row, col = edge_index
trans = coord_diff * self.coord_mlp(edge_feat)
if self.coords_agg == 'sum':
agg = unsorted_segment_sum(trans, row, num_segments=coord.size(0))
elif self.coords_agg == 'mean':
agg = unsorted_segment_mean(trans, row, num_segments=coord.size(0))
else:
raise Exception('Wrong coords_agg parameter' % self.coords_agg)
coord = coord + agg
return coord
def coord2radial(self, edge_index, coord):
row, col = edge_index
coord_diff = coord[row] - coord[col]
radial = torch.sum(coord_diff**2, 1).unsqueeze(1)
if self.normalize:
norm = torch.sqrt(radial).detach() + self.epsilon
coord_diff = coord_diff / norm
return radial, coord_diff
def forward(self, h, edge_index, coord, edge_attr=None, node_attr=None):
row, col = edge_index
radial, coord_diff = self.coord2radial(edge_index, coord)
edge_feat = self.edge_model(h[row], h[col], radial, edge_attr)
coord = self.coord_model(coord, edge_index, coord_diff, edge_feat)
h, agg = self.node_model(h, edge_index, edge_feat, node_attr)
return h, coord, edge_attr
class EGNN(nn.Module):
def __init__(self, in_node_nf, hidden_nf, out_node_nf, in_edge_nf=0, device='cpu', act_fn=nn.SiLU(), n_layers=4, residual=True, attention=False, normalize=False, tanh=False):
'''
:param in_node_nf: Number of features for 'h' at the input
:param hidden_nf: Number of hidden features
:param out_node_nf: Number of features for 'h' at the output
:param in_edge_nf: Number of features for the edge features
:param device: Device (e.g. 'cpu', 'cuda:0',...)
:param act_fn: Non-linearity
:param n_layers: Number of layer for the EGNN
:param residual: Use residual connections, we recommend not changing this one
:param attention: Whether using attention or not
:param normalize: Normalizes the coordinates messages such that:
instead of: x^{l+1}_i = x^{l}_i + Σ(x_i - x_j)phi_x(m_ij)
we get: x^{l+1}_i = x^{l}_i + Σ(x_i - x_j)phi_x(m_ij)/||x_i - x_j||
We noticed it may help in the stability or generalization in some future works.
We didn't use it in our paper.
:param tanh: Sets a tanh activation function at the output of phi_x(m_ij). I.e. it bounds the output of
phi_x(m_ij) which definitely improves in stability but it may decrease in accuracy.
We didn't use it in our paper.
'''
super(EGNN, self).__init__()
self.hidden_nf = hidden_nf
self.device = device
self.n_layers = n_layers
self.embedding_in = nn.Linear(in_node_nf, self.hidden_nf)
self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf)
for i in range(0, n_layers):
self.add_module("gcl_%d" % i, E_GCL(self.hidden_nf, self.hidden_nf, self.hidden_nf, edges_in_d=in_edge_nf,
act_fn=act_fn, residual=residual, attention=attention,
normalize=normalize, tanh=tanh))
self.to(self.device)
def forward(self, h, x, edges, edge_attr):
h = self.embedding_in(h)
for i in range(0, self.n_layers):
h, x, _ = self._modules["gcl_%d" % i](h, edges, x, edge_attr=edge_attr)
h = self.embedding_out(h)
return h, x
def unsorted_segment_sum(data, segment_ids, num_segments):
result_shape = (num_segments, data.size(1))
result = data.new_full(result_shape, 0) # Init empty result tensor.
segment_ids = segment_ids.unsqueeze(-1).expand(-1, data.size(1))
result.scatter_add_(0, segment_ids, data)
return result
def unsorted_segment_mean(data, segment_ids, num_segments):
result_shape = (num_segments, data.size(1))
segment_ids = segment_ids.unsqueeze(-1).expand(-1, data.size(1))
result = data.new_full(result_shape, 0) # Init empty result tensor.
count = data.new_full(result_shape, 0)
result.scatter_add_(0, segment_ids, data)
count.scatter_add_(0, segment_ids, torch.ones_like(data))
return result / count.clamp(min=1)
def get_edges(n_nodes):
rows, cols = [], []
for i in range(n_nodes):
for j in range(n_nodes):
if i != j:
rows.append(i)
cols.append(j)
edges = [rows, cols]
return edges
def get_edges_batch(n_nodes, batch_size):
edges = get_edges(n_nodes)
edge_attr = torch.ones(len(edges[0]) * batch_size, 1)
edges = [torch.LongTensor(edges[0]), torch.LongTensor(edges[1])]
if batch_size == 1:
return edges, edge_attr
elif batch_size > 1:
rows, cols = [], []
for i in range(batch_size):
rows.append(edges[0] + n_nodes * i)
cols.append(edges[1] + n_nodes * i)
edges = [torch.cat(rows), torch.cat(cols)]
return edges, edge_attr
if __name__ == "__main__":
# Dummy parameters
batch_size = 8
n_nodes = 4
n_feat = 1
x_dim = 3
# Dummy variables h, x and fully connected edges
h = torch.ones(batch_size * n_nodes, n_feat)
x = torch.ones(batch_size * n_nodes, x_dim)
edges, edge_attr = get_edges_batch(n_nodes, batch_size)
# Initialize EGNN
egnn = EGNN(in_node_nf=n_feat, hidden_nf=32, out_node_nf=1, in_edge_nf=1)
# Run EGNN
h, x = egnn(h, x, edges, edge_attr)