-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b4d78dc
commit a763402
Showing
1 changed file
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
## Testbed for Model Training and Evaluation | ||
|
||
### Import Necessary Libraries | ||
|
||
```python | ||
import logging | ||
from preprocess import preprocess_directory, addSupport | ||
from model import loadModel | ||
from utils import ( | ||
trainCycle, | ||
testCycle, | ||
transferTrainCycle, | ||
tfTestCycle, | ||
evaluation, | ||
evaluation_multilabel, | ||
) | ||
import pandas as pd | ||
|
||
## Parameter Setting | ||
|
||
```python | ||
X = ['X%d' % i for i in range(1, 1025)] # fingerprint columns | ||
Y = "potency" # classification column | ||
label = "SMILES" # raw fingerprint column | ||
exceptions = [] # names to not include in training | ||
path = 'BaseSet' # directory containing csv's | ||
exname = '' # extra name to add to saved results | ||
tfpath = 'TransferSet' # path of transfer data | ||
exname2 = '' # extra name for transfer data | ||
|
||
nname = path + exname | ||
nnname = tfpath + exname2 | ||
params = dict( | ||
name=nname, | ||
tfname=nnname, | ||
headshape=[2048], | ||
bodyshape=[], | ||
dr=0.5, | ||
combine_mode='cos', | ||
lr=0.0001, | ||
nsupport=100, | ||
niter=100, | ||
) | ||
|
||
modelname = "%s_%s_%.2f_%s_%s" % ( | ||
params['name'], | ||
params['combine_mode'], | ||
params['dr'], | ||
'-'.join([str(i) for i in params['headshape']]), | ||
'-'.join([str(i) for i in params['bodyshape']]), | ||
) | ||
|
||
tfmodelname = "%s_%s_%.2f_%s_%s_tf%s" % ( | ||
params['name'], | ||
params['combine_mode'], | ||
params['dr'], | ||
'-'.join([str(i) for i in params['headshape']]), | ||
'-'.join([str(i) for i in params['bodyshape']]), | ||
params['tfname'], | ||
) | ||
|
||
## Creating Data Pairs | ||
|
||
```python | ||
create_glob_set( | ||
path, X, Y, label, 7000, 7000, nnpairs=0, exceptions=exceptions, exname=exname, testsize=0.1, maxrows=None | ||
) | ||
|
||
|
||
## Training Cycle | ||
|
||
```python | ||
model, losses, _ = trainCycle(params) | ||
losses.to_csv("%s_losses.csv" % modelname) | ||
|
||
|
||
## Testing Cycle | ||
|
||
```python | ||
model, losses, _ = trainCycle(params) | ||
losses.to_csv("%s_losses.csv" % modelname) | ||
|
||
|
||
## Transfer Learning | ||
|
||
```python | ||
create_glob_set( | ||
tfpath, X, Y, label, 7000, 7000, nnpairs=0, exceptions=exceptions, exname=exname2, testsize=0.1, maxrows=None | ||
) | ||
|
||
model = loadModel("model_%s.pt" % (modelname)) | ||
tmodel, losses, _ = transferTrainCycle(model, params) | ||
|
||
# Transfer Testing | ||
|
||
```python | ||
tmodel = loadModel("model_%s.pt" % (tfmodelname)) | ||
y_proba, y_matrix = tfTestCycle(tmodel, params, saveName=tfmodelname, thresh=0.5, seed=777) | ||
|
||
|
||
## Test Cycle with Different Support (Fewshot) | ||
|
||
```python | ||
model = loadModel("model_%s.pt" % (tfmodelname)) | ||
test_raw = pd.DataFrame() | ||
support_set = dict() | ||
|
||
# Add support from directory | ||
|
||
```python | ||
support_set, test_raw = addSupport(Y, 'FewshotSet', support_set, test_raw, testPerc=0.1) | ||
model.support_pos = support_set | ||
|
||
y_test = test_raw.loc[:, 'class'] | ||
y_proba, y_matrix = testCycle(model, params, saveName=None, test_raw=test_raw, thresh=0.5) | ||
|
||
|
||
## Cosine Similarity | ||
|
||
```python | ||
from siamese_general_fit import predict_cos | ||
import numpy as np | ||
|
||
model = loadModel("model_%s.pt" % (modelname)) | ||
test_raw = pd.read_csv(nname + "_sim_test.csv") | ||
y_proba = predict_cos(model, test_raw[X].values.astype(np.float64), n_support=100, iter=100, random_seed=777) | ||
|
||
y_test = test_raw.loc[:, 'class'] | ||
|
||
y_matrix = y_proba.groupby(axis=1, level=0).max() | ||
y_matrix['LABEL'] = y_test | ||
y_matrix[label] = test_raw[label] | ||
y_matrix = y_matrix.reset_index(drop=True) | ||
|
||
res = neo_evaluation(y_matrix, y_test, thresh=0.6, noneg=True) | ||
print(res) | ||
|
||
multi_ytest = pd.read_csv("%sml_sim_test.csv" % nname) | ||
acc, pre, rec, f1, roc, ap, cf = evaluation_multilabel(y_matrix, multi_ytest, thresh=0.6) | ||
print("acc, pre, rec, f1, roc, ap") | ||
print(acc, pre, rec, f1, roc, ap) | ||
|
||
## Multi-Label Learning | ||
|
||
```python | ||
path = 'multi_label_data' | ||
exname = '' | ||
nname = path + exname | ||
nnname = tfpath + exname2 | ||
params = dict( | ||
name=nname, | ||
tfname=nnname, | ||
headshape=[2048], | ||
bodyshape=[], | ||
dr=0.5, | ||
combine_mode='cos', | ||
lr=0.0001, | ||
nsupport=100, | ||
niter=100, | ||
) | ||
|
||
modelname = "%s_%s_%.2f_%s_%s" % ( | ||
params['name'], | ||
params['combine_mode'], | ||
params['dr'], | ||
'-'.join([str(i) for i in params['headshape']]), | ||
'-'.join([str(i) for i in params['bodyshape']]), | ||
) | ||
|
||
tfmodelname = "%s_%s_%.2f_%s_%s_tf%s" % ( | ||
params['name'], | ||
params['combine_mode'], | ||
params['dr'], | ||
'-'.join([str(i) for i in params['headshape']]), | ||
'-'.join([str(i) for i in params['bodyshape']]), | ||
params['tfname'], | ||
) | ||
|
||
model, losses, _ = trainCycle(params) | ||
losses.to_csv("%s_losses.csv" % modelname) | ||
|
||
# Single label results | ||
model = loadModel("model_%s.pt" % (modelname)) | ||
y_proba, y_matrix = testCycle(model, params, saveName=modelname, thresh=0.5, seed=777, noneg=True) | ||
|
||
multi_ytest = pd.read_csv("%sml_sim_test.csv" % nname) | ||
acc, pre, rec, f1, roc, ap, cf = evaluation_multilabel(y_matrix, multi_ytest) | ||
print("acc, pre, rec, f1, roc, ap") | ||
print(acc, pre, rec, f1, roc, ap) |