-
Notifications
You must be signed in to change notification settings - Fork 115
/
miscellaneous.scad
616 lines (582 loc) · 23.8 KB
/
miscellaneous.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
//////////////////////////////////////////////////////////////////////
// LibFile: miscellaneous.scad
// Miscellaneous modules that didn't fit in anywhere else, including
// bounding box, chain hull, extrusions, and minkowski based
// modules.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Basic Modeling
// FileSummary: Extrusion, bounding box, chain hull and minkowski-based transforms.
// FileFootnotes: STD=Included in std.scad
//////////////////////////////////////////////////////////////////////
// Section: Extrusion
// Module: extrude_from_to()
// Synopsis: Extrudes 2D children between two points in 3D space.
// SynTags: Geom
// Topics: Extrusion, Miscellaneous
// See Also: path_sweep(), path_extrude2d()
// Usage:
// extrude_from_to(pt1, pt2, [convexity=], [twist=], [scale=], [slices=]) 2D-CHILDREN;
// Description:
// Extrudes the 2D children linearly between the 3d points pt1 and pt2. The origin of the 2D children are placed on
// pt1 and pt2, and oriented perpendicular to the line between the points.
// Arguments:
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// ---
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xcopies(3) circle(3, $fn=32);
// }
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
req_children($children);
check =
assert(is_vector(pt1),"First point must be a vector")
assert(is_vector(pt2),"Second point must be a vector");
pt1 = point3d(pt1);
pt2 = point3d(pt2);
rtp = xyz_to_spherical(pt2-pt1);
attachable()
{
translate(pt1) {
rotate([0, rtp[2], rtp[1]]) {
if (rtp[0] > 0) {
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
children();
}
}
}
}
union();
}
}
// Module: path_extrude2d()
// Synopsis: Extrudes 2D children along a 2D path.
// SynTags: Geom
// Topics: Miscellaneous, Extrusion
// See Also: path_sweep(), path_extrude()
// Usage:
// path_extrude2d(path, [caps=], [closed=], [s=], [convexity=]) 2D-CHILDREN;
// Description:
// Extrudes 2D children along the given 2D path, with optional rounded endcaps.
// It works by constructing straight sections corresponding to each segment of the path and inserting rounded joints at each corner.
// If the children are symmetric across the Y axis line then you can set caps=true to produce rounded caps on the ends of the profile.
// If you set caps to true for asymmetric children then incorrect caps will be generated.
// Arguments:
// path = The 2D path to extrude the geometry along.
// ---
// caps = If true, caps each end of the path with a rounded copy of the children. Children must by symmetric across the Y axis, or results are wrong. Default: false
// closed = If true, connect the starting point of the path to the ending point. Default: false
// convexity = The max number of times a line could pass though a wall. Default: 10
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: The length of the diagonal of the path's bounding box.
// Example:
// path = [
// each right(50, p=arc(d=100,angle=[90,180])),
// each left(50, p=arc(d=100,angle=[0,-90])),
// ];
// path_extrude2d(path,caps=false) {
// fwd(2.5) square([5,6],center=true);
// fwd(6) square([10,5],center=true);
// }
// Example:
// path_extrude2d(arc(d=100,angle=[180,270]),caps=true)
// trapezoid(w1=10, w2=5, h=10, anchor=BACK);
// Example:
// include <BOSL2/beziers.scad>
// path = bezpath_curve([
// [-50,0], [-25,50], [0,0], [50,0]
// ]);
// path_extrude2d(path, caps=false)
// trapezoid(w1=10, w2=3, h=5, anchor=BACK);
// Example: Un-Closed Path
// $fn=16;
// spath = star(id=15,od=35,n=5);
// path_extrude2d(spath, caps=false, closed=false)
// move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]])
// circle(r=1.5);
// Example: Complex Endcaps
// $fn=16;
// spath = star(id=15,od=35,n=5);
// path_extrude2d(spath, caps=true, closed=false)
// move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]])
// circle(r=1.5);
module path_extrude2d(path, caps=false, closed=false, s, convexity=10) {
req_children($children);
extra_ang = 0.1; // Extra angle for overlap of joints
check =
assert(caps==false || closed==false, "Cannot have caps on a closed extrusion")
assert(is_path(path,2));
path = deduplicate(path);
s = s!=undef? s :
let(b = pointlist_bounds(path))
norm(b[1]-b[0]);
check2 = assert(is_finite(s));
L = len(path);
attachable(){
union(){
for (i = [0:1:L-(closed?1:2)]) {
seg = select(path, i, i+1);
segv = seg[1] - seg[0];
seglen = norm(segv);
translate((seg[0]+seg[1])/2) {
rot(from=BACK, to=segv) {
difference() {
xrot(90) {
linear_extrude(height=seglen, center=true, convexity=convexity) {
children();
}
}
if (closed || i>0) {
pt = select(path, i-1);
pang = v_theta(rot(from=-segv, to=RIGHT, p=pt - seg[0]));
fwd(seglen/2+0.01) zrot(pang/2) cube(s, anchor=BACK);
}
if (closed || i<L-2) {
pt = select(path, i+2);
pang = v_theta(rot(from=segv, to=RIGHT, p=pt - seg[1]));
back(seglen/2+0.01) zrot(pang/2) cube(s, anchor=FWD);
}
}
}
}
}
for (t=triplet(path,wrap=closed)) {
ang = -(180-vector_angle(t)) * sign(_point_left_of_line2d(t[2],[t[0],t[1]]));
delt = point3d(t[2] - t[1]);
if (ang!=0)
translate(t[1]) {
frame_map(y=delt, z=UP)
rotate(-sign(ang)*extra_ang/2)
rotate_extrude(angle=ang+sign(ang)*extra_ang)
if (ang<0)
right_half(planar=true) children();
else
left_half(planar=true) children();
}
}
if (caps) {
bseg = select(path,0,1);
move(bseg[0])
rot(from=BACK, to=bseg[0]-bseg[1])
rotate_extrude(angle=180)
right_half(planar=true) children();
eseg = select(path,-2,-1);
move(eseg[1])
rot(from=BACK, to=eseg[1]-eseg[0])
rotate_extrude(angle=180)
right_half(planar=true) children();
}
}
union();
}
}
// Module: path_extrude()
// Synopsis: Extrudes 2D children along a 3D path.
// SynTags: Geom
// Topics: Paths, Extrusion, Miscellaneous
// See Also: path_sweep(), path_extrude2d()
// Usage:
// path_extrude(path, [convexity], [clipsize]) 2D-CHILDREN;
// Description:
// Extrudes 2D children along a 3D path. This may be slow and can have problems with twisting.
// Arguments:
// path = Array of points for the bezier path to extrude along.
// convexity = Maximum number of walls a ray can pass through.
// clipsize = Increase if artifacts are left. Default: 100
// Example(FlatSpin,VPD=600,VPT=[75,16,20]):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude(path, convexity=10, clipsize=100) {
req_children($children);
rotmats = cumprod([
for (i = idx(path,e=-2)) let(
vec1 = i==0? UP : unit(path[i]-path[i-1], UP),
vec2 = unit(path[i+1]-path[i], UP)
) rot(from=vec1,to=vec2)
]);
// This adds a rotation midway between each item on the list
interp = rot_resample(rotmats,n=2,method="count");
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
ptcount = len(path);
attachable(){
for (i = [0:1:ptcount-2]) {
pt1 = path[i];
pt2 = path[i+1];
dist = norm(pt2-pt1);
T = rotmats[i];
difference() {
translate(pt1) {
multmatrix(T) {
down(clipsize/2/2) {
if ((dist+clipsize/2) > 0) {
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
children();
}
}
}
}
}
translate(pt1) {
hq = (i > 0)? interp[2*i-1] : T;
multmatrix(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
}
translate(pt2) {
hq = (i < ptcount-2)? interp[2*i+1] : T;
multmatrix(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
}
}
}
union();
}
}
// Module: cylindrical_extrude()
// Synopsis: Extrudes 2D children outwards around a cylinder.
// SynTags: Geom
// Topics: Miscellaneous, Extrusion, Rotation
// See Also: heightfield(), cylindrical_heightfield(), cyl()
// Usage:
// cylindrical_extrude(ir|id=, or|od=, [size=], [convexity=], [spin=], [orient=]) 2D-CHILDREN;
// Description:
// Chops the 2D children into rectangles and extrudes each rectangle as a facet around an
// approximate cylindrical shape. Uses $fn/$fa/$fs to control the number of facets.
// By default the calculation assumes that the children occupy in the X direction one revolution of the
// cylinder of specified radius/diameter and are not more than 1000 units tall (in the Y direction).
// If the children are in fact much smaller in width then this assumption is inefficient. If the children
// are wider then they will be truncated at one revolution. To address either of these problems you can set
// the `size` parameter. Note that the specified height isn't very important: it just needs to be larger than
// the actual height of the children, which is why it defaults to 1000. If you set `size` to a scalar then
// that only changes the X value and the Y value remains at the default of 1000.
// .
// When performing the wrap, the X=0 line of the children maps to the Y- axis and the facets are centered on the Y- axis.
// This is not consistent with how cylinder() creates its facets. If `$fn` is a multiple of 4 then the facets will line
// up with a cylinder. Otherwise you must rotate a cylinder by 90 deg in the case of `$fn` even or `90-360/$fn/2` if `$fn` is odd.
// Arguments:
// ir = The inner radius to extrude from.
// or = The outer radius to extrude to.
// ---
// od = The outer diameter to extrude to.
// id = The inner diameter to extrude from.
// size = If a scalar, the width of the 2D children. If a vector, the [X,Y] size of the 2D children. Default: [`2*PI*or`,1000]
// convexity = The max number of times a line could pass though a wall. Default: 10
// spin = Amount in degrees to spin around cylindrical axis. Default: 0
// orient = The orientation of the cylinder to wrap around, given as a vector. Default: UP
// Example: Basic example with defaults. This will run faster with large facet counts if you set `size=100`
// cylindrical_extrude(or=50, ir=45)
// text(text="Hello World!", size=10, halign="center", valign="center");
// Example: Spin Around the Cylindrical Axis
// cylindrical_extrude(or=50, ir=45, spin=90)
// text(text="Hello World!", size=10, halign="center", valign="center");
// Example: Orient to the Y Axis.
// cylindrical_extrude(or=40, ir=35, orient=BACK)
// text(text="Hello World!", size=10, halign="center", valign="center");
// Example(Med): You must give a size argument for this example where the child wraps fully around the cylinder
// cylindrical_extrude(or=27, ir=25, size=300, spin=-85)
// zrot(-10)text(text="This long text wraps around the cylinder.", size=10, halign="center", valign="center");
module cylindrical_extrude(ir, or, od, id, size, convexity=10, spin=0, orient=UP) {
req_children($children);
ir = get_radius(r=ir,d=id);
or = get_radius(r=or,d=od);
check2 = assert(all_positive([ir,or]), "Must supply positive inner and outer radius or diameter");
circumf = 2 * PI * or;
size = is_undef(size) ? [circumf, 1000]
: is_num(size) ? [size, 1000]
: size;
check1 = assert(is_vector(size,2) && all_positive(size), "Size must be a positive number or 2-vector");
sides = segs(or);
step = circumf / sides;
steps = ceil(size.x / step);
scalefactor = sides/PI*sin(180/sides); // Scale from circle to polygon, which has shorter length
attachable() {
rot(from=UP, to=orient) rot(spin) {
for (i=[0:1:steps-1]) {
x = (i+0.5-steps/2) * step;
zrot(360 * x / circumf) {
fwd(or*cos(180/sides)) {
xrot(-90) {
linear_extrude(height=or-ir, scale=[ir/or,1], center=false, convexity=convexity) {
yflip()
xscale(scalefactor)
intersection() {
left(x) children();
rect([quantup(step,pow(2,-15)),size.y]);
}
}
}
}
}
}
}
union();
}
}
//////////////////////////////////////////////////////////////////////
// Section: Bounding Box
//////////////////////////////////////////////////////////////////////
// Module: bounding_box()
// Synopsis: Creates the smallest bounding box that contains all the children.
// SynTags: Geom
// Topics: Miscellaneous, Bounds, Bounding Boxes
// See Also: pointlist_bounds()
// Usage:
// bounding_box([excess],[planar]) CHILDREN;
// Description:
// Returns the smallest axis-aligned square (or cube) shape that contains all the 2D (or 3D)
// children given. The module children() must 3d when planar=false and
// 2d when planar=true, or you will get a warning of mixing dimension
// or scaling by 0.
// Arguments:
// excess = The amount that the bounding box should be larger than needed to bound the children, in each axis.
// planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false
// Example(3D):
// module shapes() {
// translate([10,8,4]) cube(5);
// translate([3,0,12]) cube(2);
// }
// #bounding_box() shapes();
// shapes();
// Example(2D):
// module shapes() {
// translate([10,8]) square(5);
// translate([3,0]) square(2);
// }
// #bounding_box(planar=true) shapes();
// shapes();
module bounding_box(excess=0, planar=false) {
// a 3d (or 2d when planar=true) approx. of the children projection on X axis
module _xProjection() {
if (planar) {
projection()
rotate([90,0,0])
linear_extrude(1, center=true)
hull()
children();
} else {
xs = excess<.1? 1: excess;
linear_extrude(xs, center=true)
projection()
rotate([90,0,0])
linear_extrude(xs, center=true)
projection()
hull()
children();
}
}
// a bounding box with an offset of 1 in all axis
module _oversize_bbox() {
if (planar) {
minkowski() {
_xProjection() children(); // x axis
rotate(-90) _xProjection() rotate(90) children(); // y axis
}
} else {
minkowski() {
_xProjection() children(); // x axis
rotate(-90) _xProjection() rotate(90) children(); // y axis
rotate([0,-90,0]) _xProjection() rotate([0,90,0]) children(); // z axis
}
}
}
// offsets a cube by `excess`
module _shrink_cube() {
intersection() {
translate((1-excess)*[ 1, 1, 1]) children();
translate((1-excess)*[-1,-1,-1]) children();
}
}
req_children($children);
attachable(){
if(planar) {
offset(excess-1/2) _oversize_bbox() children();
} else {
render(convexity=2)
if (excess>.1) {
_oversize_bbox() children();
} else {
_shrink_cube() _oversize_bbox() children();
}
}
union();
}
}
//////////////////////////////////////////////////////////////////////
// Section: Hull Based Modules
//////////////////////////////////////////////////////////////////////
// Module: chain_hull()
// Synopsis: Performs the union of hull operations between consecutive pairs of children.
// SynTags: Geom
// Topics: Miscellaneous
// See Also: hull()
// Usage:
// chain_hull() CHILDREN;
//
// Description:
// Performs hull operations between consecutive pairs of children,
// then unions all of the hull results. This can be a very slow
// operation, but it can provide results that are hard to get
// otherwise.
//
// Side Effects:
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
// `$primary` is set to true when the child is the first in a chain pair.
//
// Example:
// chain_hull() {
// cube(5, center=true);
// translate([30, 0, 0]) sphere(d=15);
// translate([60, 30, 0]) cylinder(d=10, h=20);
// translate([60, 60, 0]) cube([10,1,20], center=false);
// }
// Example: Using `$idx` and `$primary`
// chain_hull() {
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// }
module chain_hull()
{
req_children($children);
attachable(){
if ($children == 1) {
children();
}
else {
for (i =[1:1:$children-1]) {
$idx = i;
hull() {
let($primary=true) children(i-1);
let($primary=false) children(i);
}
}
}
union();
}
}
//////////////////////////////////////////////////////////////////////
// Section: Minkowski and 3D Offset
//////////////////////////////////////////////////////////////////////
// Module: minkowski_difference()
// Synopsis: Removes diff shapes from base shape surface.
// SynTags: Geom
// Topics: Miscellaneous
// See Also: offset3d()
// Usage:
// minkowski_difference() { BASE; DIFF1; DIFF2; ... }
// Description:
// Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the
// surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the
// surface of its base shape.
// Arguments:
// planar = If true, performs minkowski difference in 2D. Default: false (3D)
// Example:
// minkowski_difference() {
// union() {
// cube([120,70,70], center=true);
// cube([70,120,70], center=true);
// cube([70,70,120], center=true);
// }
// sphere(r=10);
// }
module minkowski_difference(planar=false) {
req_children($children);
attachable(){
difference() {
bounding_box(excess=0, planar=planar) children(0);
render(convexity=20) {
minkowski() {
difference() {
bounding_box(excess=1, planar=planar) children(0);
children(0);
}
for (i=[1:1:$children-1]) children(i);
}
}
}
union();
}
}
// Module: offset3d()
// Synopsis: Expands or contracts the surface of a 3D object.
// SynTags: Geom
// Topics: Miscellaneous
// See Also: minkowski_difference(), round3d()
// Usage:
// offset3d(r, [size], [convexity]) CHILDREN;
// Description:
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
// This is so slow that no example images will be rendered.
// Arguments:
// r = Radius to expand object by. Negative numbers contract the object.
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
module offset3d(r, size=100, convexity=10) {
req_children($children);
n = quant(max(8,segs(abs(r))),4);
attachable(){
if (r==0) {
children();
} else if (r>0) {
render(convexity=convexity)
minkowski() {
children();
sphere(r, $fn=n);
}
} else {
size2 = size * [1,1,1];
size1 = size2 * 1.02;
render(convexity=convexity)
difference() {
cube(size2, center=true);
minkowski() {
difference() {
cube(size1, center=true);
children();
}
sphere(-r, $fn=n);
}
}
}
union();
}
}
// Module: round3d()
// Synopsis: Rounds arbitrary 3d objects.
// SynTags: Geom
// Topics: Rounding, Miscellaneous
// See Also: offset3d(), minkowski_difference()
// Usage:
// round3d(r) CHILDREN;
// round3d(or) CHILDREN;
// round3d(ir) CHILDREN;
// round3d(or, ir) CHILDREN;
// Description:
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 3D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
// Use this as a last resort. This is so slow that no example images will be rendered.
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
module round3d(r, or, ir, size=100)
{
req_children($children);
or = get_radius(r1=or, r=r, dflt=0);
ir = get_radius(r1=ir, r=r, dflt=0);
attachable(){
offset3d(or, size=size)
offset3d(-ir-or, size=size)
offset3d(ir, size=size)
children();
union();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap