-
Notifications
You must be signed in to change notification settings - Fork 0
/
MLP_visualize.py
162 lines (115 loc) · 5.19 KB
/
MLP_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# import libraries.
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn.metrics import mean_squared_error,mean_absolute_error
from keras.optimizers import SGD,Adam
from keras.models import Sequential
import matplotlib.pyplot as plt
from keras.layers import Dense
import streamlit as st
import io
def model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter):
"""Creates a MLP model and return the predictions"""
# Define model.
model = Sequential()
# Adding first layers.
model.add(Dense(nodes, activation=activation, input_dim=X_train.shape[1]))
# Adding remaining hidden layers.
for i in range(layers-1):
model.add(Dense(nodes, activation=activation))
# Adding output layer.
model.add(Dense(1, activation='linear'))
# Choose optimizer.
if solver == 'adam':
opt = Adam(learning_rate=rate)
else:
opt = SGD(learning_rate=rate)
# Compile model.
model.compile(optimizer=opt,loss = 'mean_squared_error',metrics=['mean_squared_error'])
# Fit model.
model.fit(X_train, y_train, epochs=iter, verbose=0)
# Evaluate model.
y_hat = model.predict(X_test)
# Return model.
return y_hat, model
def get_model_summary(model):
stream = io.StringIO()
model.summary(print_fn=lambda x: stream.write(x + '\n'))
summary_string = stream.getvalue()
stream.close()
return summary_string
if __name__ == '__main__':
# Adding a title to the app.
st.title("Visualize MLPs")
# Adding a subtitle to the app.
st.subheader('MLP Parameters')
# Adding two columns to display the sliders for the parameters.
left_column, right_column = st.columns(2)
with left_column:
# slider for max iterations.
iter = st.slider('Max Iteration', min_value=100,max_value= 1000,value=500,step=10)
# slider for nodes per layer.
nodes = st.slider('Nodes', min_value=1,max_value= 10,value=5,step=1)
# slider for number of hidden layers.
layers = st.slider('Hidden Layers', min_value=1,max_value= 10,value=3,step=1)
# selectbox for activation function.
activation = st.selectbox('Activation',('linear','relu','sigmoid','tanh'),index=1)
with right_column:
# slider for adding noise.
noise = st.slider('Noise', min_value=0,max_value= 100,value=50,step=10)
# slider for test-train split.
split = st.slider('Test-Train Split', min_value=0.1,max_value= 0.9,value=0.3,step=0.1)
# selectbox for solver/optimizer.
solver = st.selectbox('Solver',('adam','sgd'),index=0)
# selectbox for learning rate.
rate = float(st.selectbox('Learning Rate',('0.001','0.003','0.01','0.03','0.1','0.3','1.0'),index=3))
# Generating regression data.
X, y = make_regression(n_samples=500, n_features=1, noise=noise,random_state=42,bias=3)
# Split data into training and test sets.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
# Predicting the test data.
y_hat,model = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
# Printing Model Architecture.
st.subheader('Model Architecture')
# summary = get_model_summary(model)
st.write(model.summary(print_fn=lambda x: st.text(x)))
# Plotting the Prediction data.
# creating a container to display the graphs.
with st.container():
# Adding a subheader to the container.
st.subheader('Predictions')
# Adding two columns to display the graphs.
left_graph, right_graph = st.columns(2)
with left_graph:
# Plotting the training data.
st.write('Training Data set')
fig1, ax1 = plt.subplots(1)
ax1.scatter(X_train, y_train, label='train',color='blue',alpha=0.6,edgecolors='black')
# setting the labels and title of the graph.
ax1.set_xlabel('X')
ax1.set_ylabel('y')
ax1.set_title('Training Data set')
ax1.legend()
# write the graph to the app.
st.pyplot(fig1)
with right_graph:
# Plotting the test data.
st.write('Test Data set')
fig2, ax2 = plt.subplots(1)
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.4)
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
# setting the labels and title of the graph.
ax2.set_xlabel('X')
ax2.set_ylabel('y')
ax2.set_title('Test Data set')
ax2.legend()
# write the graph to the app.
st.pyplot(fig2)
# Printing the Errors.
st.subheader('Errors')
# Calculating the MSE.
mse = mean_squared_error(y_test, y_hat, squared=False)
st.write('Root Mean Squared Error : ',mse)
# Calculating the MAE.
mae = mean_absolute_error(y_test, y_hat)
st.write('Mean Absolute Error : ',mae)