-
Notifications
You must be signed in to change notification settings - Fork 0
/
ecg_algorithm.c
461 lines (296 loc) · 9.58 KB
/
ecg_algorithm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#include "math.h"
#include "string.h"
#include "ecg_algorithm.h"
#define ABS(a) (a) < 0 ? -(a) : (a)
#define FILTER_INIT_COUNT 255
#define DC_ALPHA 0.8
#define MEAN_FILTER_SIZE 4
#define PI 3.14159265358f
#define MOVEING_WINDOW_SIZE 4
#define HISTOGRAM_SIZE 16
#define THRESHOLD_LEVEL_INIT 300000
#define SIGNAL_LEVEL_INIT 500000
#define NOISE_LEVEL_INIT 100000
#define NO_SIGNAL_LEVEL 250000
#define SIGNAL_RESET_LEVEL 1000000
#define PEACK_DECTION_RESET_COUNT 625
typedef struct DcFilter
{
double w;
double result;
} dcFilter_t;
typedef struct LowpassFilter1p
{
double pt1K, pt1Dt, pt1RC;
double pt1PrevInput;
} lowpassFilter1p;
typedef struct MeanDiffFilte
{
double values[MEAN_FILTER_SIZE];
uint8_t index;
double sum;
uint8_t count;
} meanDiffFilter_t;
typedef struct ButterworthFilter
{
double v[2];
double result;
} butterworthFilter_t;
static dcFilter_t dcFilter;
static lowpassFilter1p lowpassFilter;
static meanDiffFilter_t meanDiff;
static butterworthFilter_t butterworthFilter;
static uint16_t filter_init_count = 0;
static uint32_t ecg_heartrate = 0;
static uint32_t startEcgTime = 0;
static uint32_t beatToBeatTime = 0;
static uint32_t ecgHeartRate = 0;
static uint32_t pan_tompkins_threshold = THRESHOLD_LEVEL_INIT;
static uint32_t pan_tompkins_signal_level = SIGNAL_LEVEL_INIT;
static uint32_t pan_tompkins_noise_level = NOISE_LEVEL_INIT;
static uint8_t pan_tompkins_peak_find = 0x00;
static uint32_t pan_tompkins_peak_value = 0;
static uint32_t current_ecg_max_value_find_time = 0;
static uint32_t prev_ecg_max_value_find_time = 0;
static uint8_t moveing_window_index = 0;
static uint32_t moveing_window[MOVEING_WINDOW_SIZE] = { 0x00 };
static uint32_t moveing_window_filter_value = 0;
static uint32_t peak_dection_reset_count = 0;
static uint16_t ecgPpgHistogramCount[HISTOGRAM_SIZE];
static uint32_t ecgPpgHistogramValue[HISTOGRAM_SIZE];
static dcFilter_t dcRemoval(double x, double prev_w, double alpha)
{
dcFilter_t filtered;
filtered.w = x + alpha * prev_w;
filtered.result = filtered.w - prev_w;
return filtered;
}
static void lowpassFilterInit(float cut, float dt, lowpassFilter1p *filter)
{
filter->pt1RC = 1.0f / (2.0f * PI * cut);
filter->pt1Dt = dt;
filter->pt1K = filter->pt1Dt / (filter->pt1RC + filter->pt1Dt);
filter->pt1PrevInput = 0.0f;
}
double pt1FilterApply(double input, lowpassFilter1p *filter)
{
double output = filter->pt1PrevInput
+ filter->pt1K * (input - filter->pt1PrevInput);
filter->pt1PrevInput = output;
return output;
}
static void lowPassButterworthFilter(float x, butterworthFilter_t *filterResult)
{
filterResult->v[0] = filterResult->v[1];
filterResult->v[1] = (7.547627247472143974e-1 * x)
+ (-0.50952544949442879485 * filterResult->v[0]);
filterResult->result = filterResult->v[0] + filterResult->v[1];
}
static double meanDiffFilter(float M, meanDiffFilter_t *filterValues)
{
double avg = 0;
filterValues->sum -= filterValues->values[filterValues->index];
filterValues->values[filterValues->index] = M;
filterValues->sum += filterValues->values[filterValues->index];
filterValues->index++;
filterValues->index = filterValues->index % MEAN_FILTER_SIZE;
if (filterValues->count < MEAN_FILTER_SIZE)
filterValues->count++;
avg = filterValues->sum / filterValues->count;
return avg - M;
}
static uint8_t checkForBeatECG(int32_t sample)
{
uint8_t valid_value = 0x02;
uint32_t squaring = ABS(sample);
moveing_window[moveing_window_index++] = squaring;
if (moveing_window_index >= MOVEING_WINDOW_SIZE)
{
moveing_window_index = 0;
}
uint64_t moveing_window_average = 0;
for (uint8_t i = 0; i < MOVEING_WINDOW_SIZE; i++)
{
moveing_window_average += moveing_window[i];
}
moveing_window_average /= MOVEING_WINDOW_SIZE;
moveing_window_filter_value = moveing_window_average;
if (moveing_window_average >= NO_SIGNAL_LEVEL)
{
if (moveing_window_average > pan_tompkins_peak_value)
{
pan_tompkins_peak_value = moveing_window_average;
}
pan_tompkins_peak_find = 0x01;
}
else
{
if (pan_tompkins_peak_find)
{
pan_tompkins_threshold = pan_tompkins_noise_level
+ 0.25
* (pan_tompkins_signal_level
- pan_tompkins_noise_level);
if (pan_tompkins_peak_value >= pan_tompkins_threshold)
{
current_ecg_max_value_find_time = beatToBeatTime;
valid_value = 0x01;
}
else
{
valid_value = 0x03;
}
if (valid_value == 0x01)
{
pan_tompkins_signal_level = 0.125 * pan_tompkins_peak_value
+ 0.875 * pan_tompkins_signal_level;
}
else
{
pan_tompkins_noise_level = 0.125 * pan_tompkins_peak_value
+ 0.875 * pan_tompkins_noise_level;
}
}
pan_tompkins_peak_value = 0;
pan_tompkins_peak_find = 0x00;
}
if (moveing_window_filter_value >= SIGNAL_RESET_LEVEL)
{
pan_tompkins_threshold = THRESHOLD_LEVEL_INIT;
pan_tompkins_signal_level = SIGNAL_LEVEL_INIT;
pan_tompkins_noise_level = NOISE_LEVEL_INIT;
}
if (pan_tompkins_noise_level >= pan_tompkins_signal_level)
{
pan_tompkins_threshold = THRESHOLD_LEVEL_INIT;
pan_tompkins_signal_level = SIGNAL_LEVEL_INIT;
pan_tompkins_noise_level = NOISE_LEVEL_INIT;
}
return valid_value;
}
void init_ecg_algorithm()
{
lowpassFilter.pt1Dt = 0;
lowpassFilter.pt1K = 0;
lowpassFilter.pt1PrevInput = 0;
lowpassFilter.pt1RC = 0;
lowpassFilterInit(150.0f, 0.008, &lowpassFilter);
filter_init_count = 0;
ecg_heartrate = 0;
startEcgTime = 0;
beatToBeatTime = 0;
ecgHeartRate = 0;
memset(ecgPpgHistogramValue, 0x00, sizeof(ecgPpgHistogramValue));
memset(ecgPpgHistogramCount, 0x00, sizeof(ecgPpgHistogramCount));
moveing_window_index = 0;
memset(moveing_window, 0x00, sizeof(moveing_window));
pan_tompkins_threshold = THRESHOLD_LEVEL_INIT;
pan_tompkins_signal_level = SIGNAL_LEVEL_INIT;
pan_tompkins_noise_level = NOISE_LEVEL_INIT;
peak_dection_reset_count = 0;
}
int32_t update_ecg_algorithm(int32_t value)
{
beatToBeatTime++;
peak_dection_reset_count++;
if (peak_dection_reset_count > PEACK_DECTION_RESET_COUNT)
{
init_ecg_algorithm();
peak_dection_reset_count = 0;
}
value = pt1FilterApply(value, &lowpassFilter);
dcFilter = dcRemoval((double) value, dcFilter.w, DC_ALPHA);
value = meanDiffFilter(dcFilter.result, &meanDiff);
lowPassButterworthFilter(value, &butterworthFilter);
value = butterworthFilter.result;
if (filter_init_count > FILTER_INIT_COUNT)
{
uint8_t state = checkForBeatECG(value);
if (state == 1)
{
if (startEcgTime == 0)
{
prev_ecg_max_value_find_time = current_ecg_max_value_find_time;
startEcgTime = 1;
}
else
{
uint32_t totalTimeCount = current_ecg_max_value_find_time
- prev_ecg_max_value_find_time;
prev_ecg_max_value_find_time = current_ecg_max_value_find_time;
startEcgTime = 1;
if (totalTimeCount > 0)
{
ecgHeartRate = 60.0f / (totalTimeCount * 0.008f);
if (ecgHeartRate >= 20 && ecgHeartRate <= 180)
{
int32_t histogramPpgValue = ecgHeartRate / 10;
histogramPpgValue -= 2;
if (histogramPpgValue < 0)
{
histogramPpgValue = 0;
}
else if (histogramPpgValue >= HISTOGRAM_SIZE)
{
histogramPpgValue = HISTOGRAM_SIZE - 1;
}
ecgPpgHistogramValue[histogramPpgValue] += ecgHeartRate;
ecgPpgHistogramCount[histogramPpgValue] += 1;
peak_dection_reset_count = 0;
}
}
}
}
else if (state == 0x03)
{
beatToBeatTime = 0;
startEcgTime = 0;
}
return value;
}
else
{
filter_init_count++;
beatToBeatTime = 0;
return 0;
}
}
void get_ecg_heartrate(uint8_t *hr, uint8_t *dection_count)
{
uint16_t maxCount = 0;
uint32_t avrEcgHr = 0;
uint32_t avrEcgHrCount = 0;
for (uint8_t i = 0; i < HISTOGRAM_SIZE; i++)
{
if (ecgPpgHistogramCount[i] > maxCount)
{
avrEcgHr = ecgPpgHistogramValue[i];
avrEcgHrCount = ecgPpgHistogramCount[i];
maxCount = ecgPpgHistogramCount[i];
}
}
if (avrEcgHrCount > 0)
{
uint32_t value = avrEcgHr / avrEcgHrCount;
if (value > UINT8_MAX)
{
value = UINT8_MAX;
}
*hr = value;
value = avrEcgHrCount;
if (value > UINT8_MAX)
{
value = UINT8_MAX;
}
*dection_count = value;
}
else
{
*hr = 0;
*dection_count = 0;
}
}
uint32_t get_ecg_moving_window_value()
{
return moveing_window_filter_value;
}